OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3762–3767

Experimental demonstration of the optical Zeno effect by scanning tunneling optical microscopy

P. Biagioni, G. Della Valle, M. Ornigotti, M. Finazzi, L. Duò, P. Laporta, and S. Longhi  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 3762-3767 (2008)
http://dx.doi.org/10.1364/OE.16.003762


View Full Text Article

Acrobat PDF (285 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental demonstration of a classical analogue of the quantum Zeno effect for light waves propagating in engineered arrays of tunneling-coupled optical waveguides is reported. Quantitative mapping of the flow of light, based on scanning tunneling optical microscopy, clearly demonstrates that the escape dynamics of light in an optical waveguide side-coupled to a tight-binding continuum is slowed down when projective measurements, mimicked by sequential interruptions of the decay, are performed on the system.

© 2008 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(080.1238) Geometric optics : Array waveguide devices
(180.4243) Microscopy : Near-field microscopy
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Microscopy

History
Original Manuscript: February 1, 2008
Revised Manuscript: March 1, 2008
Manuscript Accepted: March 2, 2008
Published: March 6, 2008

Citation
P. Biagioni, G. Della Valle, M. Ornigotti, M. Finazzi, L. Duò, P. Laporta, and S. Longhi, "Experimental demonstration of the optical Zeno effect by scanning tunneling optical microscopy," Opt. Express 16, 3762-3767 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3762


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Misra and E. C. G. Sudarshan, "The Zeno’s Paradox in Quantum Theory," J. Math. Phys. 18, 756-763 (1977). [CrossRef]
  2. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, "Quantum Zeno Effect," Phys. Rev. A 41, 2295-2300 (1990). [CrossRef]
  3. P. Knight, "Watching a Laser Hot-Pot," Nature (London) 344, 493-494 (1990). [CrossRef]
  4. H. Nakazato, M. Namiki, and S. Pascazio, "Temporal behavior of Quantum Mechanical Systems," Int. J. Mod. Phys. B 10, 247-295 (1996). [CrossRef]
  5. A. G. Kofman and G. Kurizki, "Quantum Zeno effect on atomic excitation decay in resonators," Phys. Rev. A 54, R3750-R3753 (1996). [CrossRef]
  6. M. Lewenstein and K. Rz?zewski, "Quantum Anti-Zeno Effect," Phys. Rev. A 61, 022105-1-022105-5 (2000).
  7. A.G. Kofman and G. Kurizki, "Acceleration of Quantum Decay processes by frequent observations," Nature (London) 405, 546-550 (2000).
  8. A.G. Kofman and G. Kurizki, "Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the Coupling to the Continuum," Phys. Rev. Lett. 87, 270405-1-270405-4 (2001).
  9. P. Facchi, H. Nakazato, and S. Pascazio, "From the Quantum Zeno to the Inverse Quantum Zeno Effect," Phys. Rev. Lett. 86, 2699-2703 (2001). [CrossRef]
  10. P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 2001), Vol. 42, p. 147.
  11. E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, "Continuous and Pulsed Quantum Zeno Effect," Phys. Rev. Lett. 97, 260402-1-260402-4 (2006).
  12. P. Facchi and S. Pascazio, "Quantum Zeno Subspaces," Phys. Rev. Lett. 89, 080401-1-080401-4 (2002).
  13. K. Koshino and A. Shimizu, "Quantum Zeno Effect for exponentially decaying systems," Phys. Rev. Lett. 92, 030401-1-030401-4 (2004).
  14. A. Peres, "Zeno Paradox in Quantum Theory," Am J. Phys. 48, 931-932 (1980);G. S. Agarwal and S. P. Tewari, "An all-optical realization of quantum zeno effect," Phys. Lett. A 185, 139-142 (1994);M. Kitano, "Quantum Zeno Effect and intracavity polarization filters," Opt. Commun. 141, 39-42 (1997); V. Kidambi, A. Widom, C. Lerner, and Y. N. Srivastava, "Photon polarization measurements without the Quantum Zeno Effect," Am. J. Phys. 68, 475-481 (2000); K. Yamane, M. Ito, and M. Kitano, "Quantum Zeno Effect in Optical Fibers," Opt. Commun. 192, 299-307 (2001). [CrossRef]
  15. M. C. Fischer, B. Gutierrez-Medina, and M. G. Raizen, "Observation of the Quantum Zeno and Anti-Zeno Effects in an unstable system," Phys. Rev. Lett. 87, 040402-1-040402-4 (2001).
  16. See, for instance: D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, Berlin, 2004) and references therein.
  17. S. Longhi, "Nonexponential decay via tunneling in tight-binding lattices and the optical zeno effect," Phys. Rev. Lett. 97, 110402-1-110402-4 (2006).
  18. S. Longhi, "Control of Photon Tunneling in Optical Waveguides," Opt. Lett. 32, 557-559 (2007); "Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model," Phys. Rev. B 75, 184306-1-184306-12(2007); "Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir," Phys. Rev. A 74, 063826-1-063826-14 (2006). [CrossRef]
  19. I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, "Quantum Zeno and anti-Zeno effects in the Friedrichs model," Phys. Rev. A 63, 062110-1-062110-10 (2001).
  20. G. Della Valle, S. Longhi, P. Laporta, P. Biagioni, L. Duo, and M. Finazzi, "Discrete diffraction in waveguide arrays: A quantitative analysis by tunneling optical microscopy," Appl. Phys. Lett. 90, 261118-1-261118-3 (2007).
  21. S. I. Bozhevolnyi and L. Kuipers, "Near-field characterization of photonic crystal waveguides," Semicond. Sci. Technol. 21, R1-R16 (2006). [CrossRef]
  22. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003). [CrossRef]
  23. G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, V. Foglietti, "Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange," Electron. Lett. 42, 632-633 (2006).
  24. AlphaSNOM, WITec GmbH, Ulm, Germany.
  25. A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tunnermann, "Control of directional evanescent coupling in fs laser written waveguides," Opt. Express 15, 1579-1587 (2007).
  26. BeamPROP, 5.0 ed., Rsoft Design Group, Inc., 2002.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited