OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3786–3797

Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces

Jeong-Yeol Han, Sug-Whan Kim, Inwoo Han, and Geon-Hee Kim  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 3786-3797 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2 ± 2.3(σ) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.

© 2008 Optical Society of America

OCIS Codes
(220.1920) Optical design and fabrication : Diamond machining
(220.4610) Optical design and fabrication : Optical fabrication
(240.5770) Optics at surfaces : Roughness
(350.1260) Other areas of optics : Astronomical optics
(350.6090) Other areas of optics : Space optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 18, 2008
Revised Manuscript: February 16, 2008
Manuscript Accepted: February 19, 2008
Published: March 7, 2008

Jeong-Yeol Han, Sug-Whan Kim, Inwoo Han, and Geon-Hee Kim, "Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces," Opt. Express 16, 3786-3797 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Andersen, A. L. Ardeberg, J. Beckers, A. Goncharov, M. Owner-Petersen, H. Riewaldt, R. Snel, and D. D. Walker, "The Euro50 Extremely Large Telescope," Proc. SPIE 4840, 214-225 (2003). [CrossRef]
  2. Lund observatory, Euro50 optical design, http://www.astro.lu.se/~torben/euro50/optics.html.
  3. OWL, 100 m OWL design,http://www.eso.org/projects/owl/OWL_design.html.
  4. TMT, Thirty Meter Telescope Construction Proposal, http://www.tmt.org/news/TMT-Construction Proposal-Public.pdf.
  5. GMT, Giant Magellan Telescope Conceptual Design Report, http://www.gmto.org/CoDRpublic.
  6. R. N. Wilson, Reflecting Telescope Optics II (Springer-Verlag, Berlin Heidelberg, 1999), Chap. 1.
  7. Y. B. Pierre, The Design and Construction of Large Optical Telescopes (Springer-Verlag, New York, 2003), Chap. 4.
  8. L. Wang, Y. Zhu, and Q. Zhang, "Mechanical design of the stressed-lap polishing tool," Proc. SPIE 6024, 60241Y (2006). [CrossRef]
  9. D. S. Anderson, J. R. P. Angel, J. H. Burge, W. B. Davison, S. T. DeRigne, B. B. Hille, D. A. Ketelsen, W. C. Kittrell, H. M. Martin, R. H. Nagel, T. J. Trebisky, S. C. West, and R. S. Young, "Stressed-lap polishing of 3.5-m f/1.5 and 1.8-m f/1.0 mirrors," Proc. SPIE 1531, 260-269 (1992). [CrossRef]
  10. H. Lee and M. Yang, "Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold," Opt. Eng. 40, 1936-1943 (2001). [CrossRef]
  11. A. Novi, G. Basile, O. Citterio, M. Ghigo, A. Caso, G. Cattaneo, and G. F. Svelto, "Lightweight SiC foamed mirrors for space applications," Proc. SPIE 4444, 59-65 (2001). [CrossRef]
  12. T. W. Drueding, S. C. Fawcett, S. R. Wilson, and T. G. Bifano, "Ion beam figuring of small optical components," Opt. Eng. 34, 3565-3571 (1995). [CrossRef]
  13. F. Vega, N. Lupon, J. A. Cebrian, and F. Laguarta, "Laser application for optical glass polishing," Opt. Eng. 37, 272-279 (1998). [CrossRef]
  14. X. Chen and W. B. Rowe, "Analysis and simulation of the grinding process. Part II. Mechanics of grinding," Int. J. Mach. Tools Manuf. 36, 883-896 (1996). [CrossRef]
  15. Z. B. Hou and R. Komanduri, "On the mechanics of the grinding process - Part I. Stochastic nature of the grinding process," Int. J. Mach. Tools Manuf. 43, 1579-1593 (2003). [CrossRef]
  16. M. S. Samhouri and B. W. Surgenor, "Surface roughness in grinding: on-line prediction with adaptive neuro-fuzzy inference system," Automatic controls laboratory, Department of Mechanical and Materials Engineering, Queen’s university, http://me.queensu.ca/people/surgenor/research/controls/NAMRI2005onlineprediction.pdf. [PubMed]
  17. R. L. Hecker and S. Y. Liang, "Predictive modeling of surface roughness in grinding," Int. J. Mach. Tools Manuf. 43, 755-761 (2003). [CrossRef]
  18. G. Kim, "Evaluation of Pre-estimation Model to the Inprocess Surface Roughness for Grinding Operations," Int. J. Korean Soc. of Precision Eng. 3, 24-30 (2002).
  19. X. Zhou and F. Xi, "Modeling and predicting surface roughness of the grinding process," Int. J. Mach. Tools Manuf. 42, 969-977 (2002). [CrossRef]
  20. S. Agarwal and P. V. Rao, "A probabilistic approach to predict surface roughness in ceramic grinding," Int. J. Mach. Tools Manuf. 45, 609-616 (2005). [CrossRef]
  21. X. Chen, D. R. Allanson and W. B. Rowe, "Life cycle model of the grinding process," Comp. Ind. 36, 5-11 (1998). [CrossRef]
  22. Y. Namba, "Ultraprecision grinding of chemical vapor deposited silicon carbide mirrors for synchrotron radiation," Proc. SPIE 2856, 323-330 (1996). [CrossRef]
  23. W. K. Kahl, "Ductile grinding of silicon carbide as a production method for reflective optics," Proc. SPIE 1994, 31-38 (1994). [CrossRef]
  24. W. Yao, Y. Zhang and J. Han, "Machining characteristics and removal mechanisms of reaction bonded silicon carbide," Proc. SPIE 6149, 61490W (2006). [CrossRef]
  25. E.-S. Lee and S.-Y. Baek, "A study on optimum grinding factors for aspheric convex surface micro-lens using design of experiments," Int. J. Mach. Tools Manuf. 47, 509-520 (2007). [CrossRef]
  26. X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans and D. D. Walker, "Subsurface damage in precision ground ULE and Zerodur surfaces," Opt. Express 15, 12197-12205 (2007). [CrossRef] [PubMed]
  27. S. Li, Z. Wang and Y. Wu, "Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes," J. Mat. Proc. Tech. (to be published).
  28. S. Agarwal and P. V. Rao, "Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding," J. Mach. Tools Manuf. (to be published). [PubMed]
  29. S. Yin, S. Morita, H. Ohmori Y. Uehara, W. Lin, Q. Liu, T. Maihara, F. Iwamuro, and D. Mochida, "ELID precision grinding of large special Schmidt plate for fibre multi-object spectrograph for 8.2m Subaru telescope," Int. J. Mach. Tools Manuf. 45, 1598-1604 (2005). [CrossRef]
  30. Q1. A. C. Okafor and Y. M. Ertekin, "Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics," Int. J. Mach. Tools Manuf. 40, 1199-1213 (2000). [CrossRef]
  31. H. K. Tonshoff, J. Peters, I. Inasaki, and T. Paul, "Modeling and simulation of grinding processes," CIRP Annals - Manufacturing Technology 41, 677-688 (1992). [CrossRef]
  32. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the Physical Sciences (McGraw-Hill, New York, 2003), Chap. 7.
  33. ISO, "Geometrical Product Specifications (GPS) - Surface texture: Profile method - Nominal characteristics of contact (stylus) instruments, 4.4", (3274-ENGL 1996), p.8.
  34. M. Chen, F. Zhang, Q. Zhao and S. Dong, "Ultraprecision grinding machining of optical aspheric surface in ductile mode," Proc. SPIE 4451, 191-199 (2001). [CrossRef]
  35. J.-Y. Han, Major of Astronomy and Space Science, University of Science and Technology, 52 Eoeun-dong, YuseongGu, Daejeon, 305-333, and S.-W. Kim are preparing a manuscript to be called "Evolutionary grinding process simulation for aspheric optical surface of 1 m in diameter."

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited