OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3834–3843

Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides

A. Husakou and J. Herrmann  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 3834-3843 (2008)
http://dx.doi.org/10.1364/OE.16.003834


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that hollow dielectric-coated metallic waveguides exhibit ultrabroadband transmission and controlled anomalous dispersion in the visible, UV, and VUV range even at high gas pressures. Using the transfer-matrix method we predict that the losses can be significantly reduced in such waveguides, which allows the use of small radii in the range of 10–25 µm. The resulting significant enhancement of the waveguide contribution to dispersion facilitates phase-matching for nonlinear processes with higher efficiencies.

© 2008 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Optical Devices

History
Original Manuscript: January 31, 2008
Revised Manuscript: March 4, 2008
Manuscript Accepted: March 4, 2008
Published: March 7, 2008

Citation
A. Husakou and J. Herrmann, "Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides," Opt. Express 16, 3834-3843 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3834


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  2. M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996). [CrossRef]
  3. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007). [CrossRef]
  4. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001). [CrossRef] [PubMed]
  5. V. P. Kalosha and J. Herrmann, "Pulse compression without chirp control and frequency detuning by high-order coherent Raman scattering in impulsively excited media," Opt. Lett. 26, 456-458 (2001). [CrossRef]
  6. N. Zhavoronkov and G. Korn, "Generation of single intense optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002). [CrossRef] [PubMed]
  7. V. P. Kalosha and J. Herrmann, "Ultrawide psectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering," Phys. Rev. A 68, 023812 (2003). [CrossRef]
  8. F. Noack, O. Steinkeller, P. Tzankov, H.-H. Ritze, J. Herrmann, and Y. Kida, "Generation of sub-30 fs ultraviolet pulses by Raman induced phase modulation in nitrogen," Opt. Express 13, 2467-2474 (2005). [CrossRef] [PubMed]
  9. A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998). [CrossRef] [PubMed]
  10. C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999). [CrossRef]
  11. P. Tzankov, O. Steinkeller, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, "High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser," Opt. Express 15, 6389-6395 (2007). [CrossRef] [PubMed]
  12. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  13. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  14. D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  15. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hoolow Core Photonic Crystal Fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  16. A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007). [CrossRef] [PubMed]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  18. A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  19. P. Yeh, A. Yariv and E. Marom, "Theory of bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  20. Y. Matsuura, T. Abel, and J. A. Harrington, "Optical properties of small-bore hollow glass waveguides," Appl. Opt. 34, 6842-6847 (1995). [CrossRef] [PubMed]
  21. Y. Matsuura and J. A. Harrington, "Infrared hollow glass waveguides fabricated by chemical vapor deposition," Opt. Lett. 20, 2078-2080 (1995). [CrossRef] [PubMed]
  22. Y. Matsuura and M. Miyagi, "Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides," Appl. Opt. 32, 6598-6601 (1993). [CrossRef] [PubMed]
  23. M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Technol. 2, 116-126 (1984). [CrossRef]
  24. Note that there is a mistake in Eq. (37) in [19]: all explicit expressions 1/x should be substituted by y/x2.
  25. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-780 (2001). [CrossRef] [PubMed]
  26. E. D. Palik (ed.), Handbook of Optical Constants of Solids, (Academic Press, New York, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited