OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3896–3911

Wavelength switchable semiconductor laser using half-wave V-coupled cavities

Jian-Jun He and Dekun Liu  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 3896-3911 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new semiconductor laser structure with digitally switchable wavelength is proposed. The device comprises two coupled c.avities with different optical path lengths, which form V-shaped branches with a reflective 2 × 2 half-wave optical coupler at the closed end. The reflective 2 × 2 coupler is designed to have a π-phase difference between cross-coupling and self-coupling so as to produce synchronous power transfer functions. High single-mode selectivity is achieved by optimizing the coupling coefficient. The switchable wavelength range is greatly increased by using Vernier effect. Using deep-etched trenches as partial reflectors, additional waveguide branch structures are used outside the laser cavities to form a complete Mach-Zehnder interferometer, allowing space switching, variable attenuation, or high speed modulation to be realized simultaneously. Detailed design principle and numerical results are presented.

© 2008 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 27, 2008
Revised Manuscript: March 4, 2008
Manuscript Accepted: March 5, 2008
Published: March 10, 2008

Jian-Jun He and Dekun Liu, "Wavelength switchable semiconductor laser using half-wave V-coupled cavities," Opt. Express 16, 3896-3911 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers," invited paper, IEEE J. Sel. Top. Quantum Electron. 13, 3-14 (2007). [CrossRef]
  2. N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-Section DBR Tunable Lasers," IEEE J. Sel. Areas Commun. 8, 1203-1213 (1990). [CrossRef]
  3. V. Jayaraman, A. Mathur, and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993). [CrossRef]
  4. L. A. Coldren, "Monolithic Tunable Diode Lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000). [CrossRef]
  5. P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation," IEEE Photon. Technol. Lett. 20, 239-241 (2008). [CrossRef]
  6. Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993). [CrossRef]
  7. R. C. Alferness, U. Koren, and L. L. Buhl, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," Appl. Phys. Lett. 60, 3209-3211 (1992). [CrossRef]
  8. J.-O. Wesström, G. Sarlet, and S. Hammerfeldt, "State of the art performance of widely tunable modulated grating Y-branch lasers," Optical Fiber Communication Conference, Washington DC, paper TuE2 (2004).
  9. D. J. Robbins, G. Busico, L. Ponnampalam, J. P. Duck, P. J. Williams, R. A. Griffin, A. J. Ward, D. C. J. Reid, N. D. Whitbread, and E. Barton, "A high power, broadband tuneable laser module based on a DS-DBR laser with integrated SOA," Optical Fiber Communication Conference, Washington DC, Paper TuE3 (2004).
  10. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981). [CrossRef]
  11. W. T. Tsang, "The cleaved-coupled-cavity (C3) laser," Semicond. Semimetals  22, 257 (1985). [CrossRef]
  12. L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984). [CrossRef]
  13. T. L. Koch and L. A. Coldren, "Optimum coupling junction and cavity lengths for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985). [CrossRef]
  14. D. Marcuse, "Coupling coefficients of coupled laser cavities," IEEE J. Quantum Electron. 22, 223-226 (1986). [CrossRef]
  15. R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988). [CrossRef]
  16. O. Hildebrand, M. Schilling, D. Baums,  et al., "The Y-laser: A Multifunctional Device for Optical Communication Systems and Switching Networks," J. Lightwave Technol. 11, 2066-2074 (1993). [CrossRef]
  17. M. Kuznetsov, P. Verlangieri, and A. G. Dentai, "Asymmetric Y-Branch Tunable Semiconductor Laser with 1.0 THz Tuning Range," IEEE Photon. Technol. Lett. 4, 1093-1095 (1992). [CrossRef]
  18. M. Schilling, K. Diitting, and W. Idler, "Asymmetrical Y laser with simple single current tuning response," Electron. Lett. 28, 1698-1699 (1992). [CrossRef]
  19. M. Kuznetsov, "Design of widely tunable semiconductor three-branch lasers," J. Lightwave Technol. 12, 2100-2106 (1994). [CrossRef]
  20. T. L. Koch and U. Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications," J. Lightwave Technol. 8, 274-293 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited