OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3993–4000

Direct temperature dependence measurements of dark conductivity and two-beam coupling in LiNbO3:Fe

S. A. Basun, G. Cook, and D. R. Evans  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 3993-4000 (2008)
http://dx.doi.org/10.1364/OE.16.003993


View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct measurements of dark conductivity were conducted over a broad temperature range in LiNbO3:Fe. These measurements were performed on a series of crystals, which were cut from the same boule and subjected to different annealing procedures (oxidized, reduced, and as-grown). Activation energies of 0.5 eV and 1.1 eV were extracted from Arrhenius plots of the dark conductivity data. The location of the Fe2+ energy level in the band gap was determined, and is in agreement with Born’s principle. A correlation between the Maxwell relaxation times and the onset of a temperature-dependent reduction in two-beam coupling efficiency was observed.

© 2008 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.2260) Materials : Ferroelectrics
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing
(300.6350) Spectroscopy : Spectroscopy, ionization
(090.5694) Holography : Real-time holography

ToC Category:
Materials

History
Original Manuscript: November 12, 2007
Revised Manuscript: March 4, 2008
Manuscript Accepted: March 8, 2008
Published: March 11, 2008

Citation
S. A. Basun, G. Cook, and D. R. Evans, "Direct temperature dependence measurements of dark conductivity and two-beam coupling in LiNbO3:Fe," Opt. Express 16, 3993-4000 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. S. Chen, J. T. LaMacchia, D. B. Fraser, "Holographic Storage in Lithium Niobate," Appl. Phys. Lett. 13, 223-225 (1968). [CrossRef]
  2. R. McRuer, J. Wilde, L. Hesselink, and J. Goodman, "2-Wavelength Photorefractive Dynamic Optical Interconnect," Opt. Lett. 14,1174-1176 (1989). [CrossRef] [PubMed]
  3. G. A. Rakuljic and V. Leyva, "Volume Holographic Narrow-Band Optical Filter," Opt. Lett. 18, 459-461 (1993). [CrossRef] [PubMed]
  4. B. H. Soffer, G. J. Dunning, Y. Owechko, and E. Marom, "Associative Holographic Memory with Feedback using Phase-Conjugate Mirrors," Opt. Lett. 11, 118-120 (1986). [CrossRef] [PubMed]
  5. S. M. Jensen and R. W. Hellwarth, "Generation of Time-Reversed Waves by Non-linear Refraction in a Waveguide," Appl. Phys. Lett. 33, 404-405 (1978). [CrossRef]
  6. E. Krätzig and R. Orlowski, "LiTaO3 as Holographic Storage Material," Appl. Phys. 15, 133-139 (1978). [CrossRef]
  7. I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of Iron in Lithium-Niobate Crystals for the Dark-Storage Times of Holograms," J. Appl. Phys. 88, 4282-4286 (2000). [CrossRef]
  8. Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals," Appl. Phys. Lett. 78, 4076-4078 (2001). [CrossRef]
  9. K. R. MacDonald, J. Feinberg, Z. Z. Ming, and P. Günter, "Asymmetric Transmission through a Photorefractive Crystal of Barium-Titanate," Opt. Commun. 50, 146-150 (1984). [CrossRef]
  10. G. Cook, C. J. Finnan, and D. C. Jones, "High Optical Gain using Counterpropagating Beams in Iron and Terbium Doped Photorefractive Lithium Niobate," Appl. Phys. B 68, 911-916 (1999). [CrossRef]
  11. A. M. Glass, D. von der Linde, and T. J. Negran, "High-Voltage Bulk Photovoltaic effect and their Photorefractive Process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974). [CrossRef]
  12. G. Cook, J. P. Duignan, and D. C. Jones, "Photovoltaic Contribution to Counter-Propagating Two-Beam Coupling in Photorefractive Lithium Niobate," Opt. Commun. 192, 393-398 (2001). [CrossRef]
  13. E. Krätzig, "Photorefractive effects in Electrooptic Crystals," Ferroelectrics 21, 635-636 (1978). [CrossRef]
  14. D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of photorefractive grating writing instabilities in iron-doped Lithium Niobate," IEEE J. Quantum Electron. 38, 1661-1665 (2002). [CrossRef]
  15. S. A. Basun, D. R. Evans, J. O. Barnes, T. J. Bunning, S. Guha, G. Cook, and R. S. Meltzer, "Optical Absorption Spectroscopy of Fe2+ and Fe3+ Ions in LiNbO3," J. Appl. Phys. 92, 7051-7055 (2002). [CrossRef]
  16. L. Kovàcs and K. Polgar, Electrical Conductivity of Lithium Niobate, EMIS Datareviews Series No. 5, 109-114 (INSPEC, IEEE, London 1989).
  17. S. Klauer, M. Wöhlecke, and S. Kapphan, "Influence of H-D Isotopic substitution on the Protonic Conductivity of LiNbO3," Phys. Rev. B 45, 2786-2799 (1992). [CrossRef]
  18. K. Brands, D. Haertle, M. Falk, Th. Woike, and K. Buse, "Impedance Spectroscopy of Highly Iron-Doped Lithium Niobate Crystals," in Proceeding of Controlling Light with Light, OSA Topical Meeting, Lake Tahoe, CA, Oct. 14-16, 2007.
  19. G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, "Electrical properties along the X and Z Axes of LiNbO3 Wafers," J. Appl. Phys. 95, 3116-3119 (2004). [CrossRef]
  20. N. Schmidt, K. Betzler, M. Grabs, S. Kapphan, and F. Klose, "Spatially resolved Second-Harmonic Generation Investigations of Proton-Induced Refractive-Index changes in LiNbO3," J. Appl. Phys. 65, 1253-1256 (1989). [CrossRef]
  21. M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, "Electronic-Structure and Optical Index Damage of Iron-Doped Lithium-Niobate," J. Chem. Phys. 59, 6209-6219 (1973). [CrossRef]
  22. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, "Photorefractive Centers in LiNbO3 studied by Optical, Mössbauer and EPR Methods," Appl. Phys. 12, 355-368 (1977). [CrossRef]
  23. I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, "Low-temperature electrical conductivity of congruent Lithium Niobate Crystals," Phys. Solid State 40, 1190-1192 (1998). [CrossRef]
  24. D. C. Jones and G. Cook, "Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry," Opt. Commun. 180, 391-402 (2000). [CrossRef]
  25. R. T. Smith and F. S. Welsh, "Temperature dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate," J. Appl. Phys. 42, 2219-2230 (1971). [CrossRef]
  26. A. Mansingh and A. Dhar, "The AC Conductivity and Dielectric Constant of Lithium Niobate Single Crystals," J. Phys. D: Appl. Phys. 18, 2059-2071 (1985). [CrossRef]
  27. R. H. Bube, Photoconductivity of Solids, (John Wiley and Sons, Inc., New York 1960).
  28. D. R. Evans, J. L. Gibson, S. A. Basun, M. A. Saleh, and G. Cook, "Understanding and Eliminating Photovoltaic induced instabilities in Contra-Directional Two-Beam Coupling in Photorefractive LiNbO3:Fe," Opt. Mater. 27, 1730-1732 (2005). [CrossRef]
  29. C. Gu, J. Hong, H-Y Li, D. Psaltis, and P. Yeh, "Dynamics of Grating Formation in Photovoltaic Media," J. Appl. Phys. 69, 1167-1172 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited