OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4029–4047

Two-photon absorption standards in the 550–1600 nm excitation wavelength range

Nikolay S. Makarov, Mikhail Drobizhev, and Aleksander Rebane  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4029-4047 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present absolute two-photon absorption (2PA) spectra of 15 commercial organic dyes covering an extended range of excitation wavelengths, 550–1600 nm. The 2PA is measured with an estimated accuracy ±10% using a femtosecond fluorescence excitation method. The data are corrected for the variations of the pulse duration and the beam profile with the excitation wavelength, and are applicable as reference standards for 2PA measurements.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Nonlinear Optics

Original Manuscript: January 8, 2008
Revised Manuscript: February 15, 2008
Manuscript Accepted: March 4, 2008
Published: March 11, 2008

Nikolay S. Makarov, Mikhail Drobizhev, and Aleksander Rebane, "Two-photon absorption standards in the 550-1600 nm excitation wavelength range," Opt. Express 16, 4029-4047 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003), and references therein. [CrossRef] [PubMed]
  2. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989). [CrossRef] [PubMed]
  3. G. W. Burr, "Volumetric storage" in Encyclopedia of Optical Engineering, R. B. Johnson and R. G. Driggers, eds., (Marcel Dekker, New York, 2003), and references therein.
  4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-53 (1999). [CrossRef]
  5. C. W. Spangler, "Recent development in the design of organic materials for optical power limiting," J. Mater. Chem. 9, 2013-2020 (1999), and references therein. [CrossRef]
  6. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, "Two-photon photodynamic therapy," J. Clin. Laser Med. Surg. 15, 201-204 (1997). [PubMed]
  7. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, "Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 7, 971-975 (2001). [CrossRef]
  8. N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, "Optimizing two-photon absorption for volumetric optical data storage," J. Opt. Soc. Am. B 24, 1874-1885 (2007). [CrossRef]
  9. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005). [CrossRef]
  10. C. Xu and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm," J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  11. M. A. Albota, C. Xu, and W. W. Webb, "Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm," Appl. Opt. 37, 7352-7356 (1998). [CrossRef]
  12. W. L. Peticolas, R. Norris, and K. E. Rieckhoff, "Polarization effects in the two-photon excitation of anthracene fluorescence," J. Chem. Phys. 42, 4164-4169 (1965). [CrossRef]
  13. M. D. Galanin and Z. A. Chizhikova, "Effective cross sections of two-photon absorption in organic molecules," JETP Lett. 4,27-28 (1966).
  14. A. P. Aleksandrov and V. I. Bredikhin, "Measurement of the absolute value of the cross-section for two-photon absorption in anthracene molecules," Opt. Spectrosc. 30, 37-38 (1971).
  15. J. P. Hermann and J. Ducuing, "Absolute measurement of two-photon cross sections," Phys. Rev. A 5, 2557-2568 (1972). [CrossRef]
  16. J. P. Hermann and J. Ducuing, "Dispersion of the two-photon cross section in rhodamine dyes," Opt. Commun. 6, 101-105 (1972). [CrossRef]
  17. D. J. Bradley, M. H. R. Hutchinson, and H. Koetser, "Interactions of picosecond laser pulses with organic molecules. II. Two-photon absorption cross-sections," Proc. R. Soc. Lond. A 329, 105-119 (1972). [CrossRef]
  18. I. M. Catalano and A. Cingolani, "Absolute two-photo fluorescence with low-power cw lasers," Appl. Phys. Lett. 38, 745-747 (1981). [CrossRef]
  19. I. M. Catalano and A. Cingolani, "Multiphoton cross-section measurements with low-power cw laser-induced luminescence," Appl. Opt. 21, 477-480 (1982). [CrossRef] [PubMed]
  20. S. Li and C. Y. She, "Two-photon absorption cross-section measurements in common laser dyes at 1.06 ?m," Opt. Acta 29, 281-287 (1982). [CrossRef]
  21. S. M. Bachilo and S. L. Bondarev, "Spectral and polarization features of two-photon absorption in retinal and retinyl acetate," J. Appl. Spectrosc. 45, 1078-1083 (1987). [CrossRef]
  22. A. P. Blokhin, A. V. Povedailo, and V. A. Tolkachev, "Polarization of two-photon excited fluorescence of vapors of complex organic molecules," Opt. Spectrosc. 60, 60-64 (1986).
  23. P. Sperber and A. Penzkofer, "S0-Sn two-photon absorption dynamics of rhodamine dyes," Opt. Quantum Electron. 18, 381-401 (1986). [CrossRef]
  24. A. Penzkofer and W. Leupacher, "S0-S1 two photon absorption dynamics of organic dye solutions," Opt. Quantum Electron. 19, 327-349 (1987). [CrossRef]
  25. C. Xu, J. Guild, W. W. Webb, and W. Denk, "Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation," Opt. Lett. 20, 2372-2374 (1995). [CrossRef] [PubMed]
  26. P. Kaatz and D. P. Shelton, "Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering," J. Opt. Soc. Am. B 16, 998-1006 (1999). [CrossRef]
  27. J. M. Song, T. Inoue, H. Kawazumi, and T. Ogawa, "Determination of two photon absorption cross section of fluorescein using a mode locked titanium sapphire laser," Anal. Sci. 15, 601-603 (1999). [CrossRef]
  28. P. Sengupta, J. Balaji, S. Banerjee, R. Phillip, G. R. Kumar, and S. Maiti, "Sensitive measurement of absolute two-photon absorption cross sections," J. Chem. Phys. 112, 9201-9205 (2000). [CrossRef]
  29. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, "Observations on the measurement of two-photon absorption cross-section," Opt. Commun. 191, 235-243 (2001). [CrossRef]
  30. P. Tian and W. S. Warren, "Ultrafast measurement of two-photon absorption by loss modulation," Opt. Lett. 27, 1634-1636 (2002). [CrossRef]
  31. R. Kapoor, C. S. Friend, and A. Parta, "Two-photon-excited absolute emission cross-sectional measurements calibrated with a luminance meter," J. Opt. Soc. Am. B 20, 1550-1554 (2003). [CrossRef]
  32. M. Kauert, P. C. Stoller, M. Frenz, and J. Ri?ka, "Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique," Opt. Express 14, 8434-8447 (2006). [CrossRef]
  33. A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003). [CrossRef]
  34. A. Rebane, N. Christensson, M. Drobizhev, Y. Stepanenko, and C. W. Spangler, "Quantum interference in organic solid," Opt. Express 13, 6033-6038 (2005). [CrossRef] [PubMed]
  35. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, "Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives," J. Am. Chem. Soc. 122, 9500-9510 (2000). [CrossRef]
  36. J. N. Demas and G. A. Crosby, "The measurement of photoluminescence quantum yields. A review," J. Phys. Chem. 75, 991-1024 (1971). [CrossRef]
  37. T. Karstens and K. Kobs, "Rhodamine B and Rhodamine 101 as reference substances for fluorescence quantum yield measurements," J. Phys. Chem. 84, 1871-1872 (1980). [CrossRef]
  38. O. S. Finikova, T. Troxler, A. Senes, W. F. DeGrado, R. M. Hochstrasser, and S. A. Vinogradov, "Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores," J. Phys. Chem. A 111, 6977-6990 (2007). [CrossRef] [PubMed]
  39. G. A. Reynolds and K. H. Drexhage, "New coumarin dyes with rigidized structure for flashlamp-pumped lasers," Chem. Phys. Lett. 13, 222-225 (1975).
  40. A. Fischer, C. Cremer, and E. H. K. Stelzer, "Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser," Appl. Opt. 34, 1989-2003 (1995). [CrossRef] [PubMed]
  41. M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Y. Suo, and C. W. Spangler, "Strong cooperative enhancement of two-photon absorption in dendrimers," J. Phys. Chem. B 107, 7540-7543 (2003). [CrossRef]
  42. Z. Huang, X. Wang, B. Li, C. Lv, J. Xu, W. Jiang, X. Tao, S. Qian, Y. Chui, and P. Yang, "Two-photon absorption of new multibranched chromophores based on bis(diphenylamino)stilbene," Opt. Mater. 29, 1084-1090 (2007). [CrossRef]
  43. W. W. Stewart, "Synthesis of 3,6-disulfonated 4-aminonaphthalimides," J. Am. Chem. Soc. 103, 7615-7620 (1981). [CrossRef]
  44. A. Karotki, M. Khurana, J. R. Lepock, and B. C. Wilson, "Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy," Photochem. Photobiol. 82, 443-452 (2006). [CrossRef] [PubMed]
  45. M. Kruk, A. Karotki, M. Drobizhev, V. Kuzmitsky, V. Gael, and A. Rebane, "Two-photon absorption of tetraphenylporphin free base," J. Lumin. 105, 45-55 (2003). [CrossRef]
  46. M. Morone, L. Beverina, A. Abbotto, F. Silvestri, E. Collini, C. Ferrante, R. Bozio, and G. A. Pagani, "Enhancement of two-photon absorption cross-section and singlet-oxygen generation in porphyrins upon ?-functionalization with donor-acceptor substituents," Org. Lett. 8, 2719-2722 (2006). [CrossRef] [PubMed]
  47. T. Ishi-i, Y. Taguri, S. Kato, M. Shigeiva, H. Gorohmaru, S. Maeda, and S. Mataka, "Singlet oxygen generation by two-photon excitation of porphyrin derivatives having two-photon-absorbing benzothiadiazole chromophores," J. Mater. Chem. 17, 3341-3346 (2007). [CrossRef]
  48. M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006). [CrossRef] [PubMed]
  49. R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, "Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping," Opt. Commun. 277, 433-439 (2007). [CrossRef]
  50. G. O. Clay, C. B. Schaffer, and D. Kleinfeld, "Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm," J. Chem. Phys. 126, 025102 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited