OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4048–4058

Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices

Ɖ. Jovanović, R. Gajić, and K. Hingerl  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 4048-4058 (2008)
http://dx.doi.org/10.1364/OE.16.004048


View Full Text Article

Enhanced HTML    Acrobat PDF (2472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we theoretically study refraction effects in the 2D square-like Archimedean photonic crystals (32, 4, 3, 4) and (4, 82) made of dielectric rods in air. In addition, we investigated a band isotropy and band gap structure in these lattices. We compared the square and square-like structures as well, their refraction characteristics, zone structures and the level of band and band gap isotropy (bandwidth and band gap dependence on the wave vector). We found that square-like structures can have some advantages over the square ones regarding the completeness of the gap, its isotropy and the gap width. Also, due to the same square primitive unit cell and the first Brillouin zone, the square and square-like lattices have similar optical response in lower bands.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(350.3618) Other areas of optics : Left-handed materials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 16, 2008
Revised Manuscript: February 23, 2008
Manuscript Accepted: February 23, 2008
Published: March 11, 2008

Citation
D. Jovanovic, R. Gajic, and K. Hingerl, "Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices," Opt. Express 16, 4048-4058 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light, (Princeton University Press, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals, (Springer, 2005).
  3. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Uspekhi Fiz. Nauk 92, 517-526 (1967).
  4. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  5. V. G. Veselago, "Electrodynamics of materials with negative index of refraction," Uspekhi Fiz. Nauk 173, 790-794 (2003). [CrossRef]
  6. M. Notomi, "Negative refraction in photonic crystals," Opt. Quantum Electron. 34, 133-143 (2002). [CrossRef]
  7. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  8. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  9. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  10. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today, June, 37-43 (2004). [CrossRef]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techniques 47, 2075-2084 (1999). [CrossRef]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  13. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refraction index," Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  14. S. Foteinopoulou and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B 72, 165112 (2005). [CrossRef]
  15. E.  Cubukcu, K.  Aydin, E.  Ozbay, S.  Foteinopoulou, and C. M.  Soukoulis, "Negative Refraction by Photonic Crystals," Nature  423, 604 (2003). [CrossRef] [PubMed]
  16. R. Gajic, R. Meisels, F. Kuchar, and K. Hingerl, "All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals," Phys. Rev. B 73, 165310 (2006) [CrossRef]
  17. R. Gajic, R. Meisels, F. Kuchar, and K. Hingerl, "Refraction and rightness in photonic crystals," Opt. Express 13, 8596-8605 (2005). [CrossRef] [PubMed]
  18. R. Gaji?, R. Meisels, F. Kuchar, ?. Jovanovi?, and K. Hingerl, "Negative refraction and left-handedness in 2D Archimedean lattice photonic crystals," Mater. Sci. Forum 555, 83-88 (2007) [CrossRef]
  19. R. Gaji?, ?. Jovanovi?, K. Hingerl, R. Meisels, and F. Kuchar, "2D photonic crystals on the archimedean lattices tribute to Johannes Kepler (1571-1630)," Opt. Mater. 30, 1065 (2008). [CrossRef]
  20. E.  Cubukcu, K.  Aydin, E.  Ozbay, S.  Foteinopoulou, and C. M.  Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett.  91, 207401 (2003). [CrossRef] [PubMed]
  21. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-10099 (1998). [CrossRef]
  22. C.  Luo, S. G.  Johnson, J. D.  Joannopoulos, and J. B.  Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B  65, 201104 (2002). [CrossRef]
  23. R. Meisels, R. Gajic, F. Kuchar, and K. Hingerl, "Negative refraction and flat-lens focusing in a 2D square-lattice photonic crystal at microwave and millimeter wave frequencies," Opt. Express 14, 6766-6777 (2006). [CrossRef] [PubMed]
  24. S. David, A. Chelnokov, and J. M. Lourtioz, "Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings," Opt. Lett. 25, 1001-1003 (2000). [CrossRef]
  25. A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, and H. Benisty", GaN light-emitting diodes with Archimedean lattice photonic crystals," Appl. Phys. Lett. 88, 073510 (2006). [CrossRef]
  26. M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre, and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83, 1283-1285 (2003). [CrossRef]
  27. B. P. Hiett, D. H. Beckett, S. J. Cox, J. M. Generowicz, M. Molinari and K. S. Thomas, "Photonic band gaps in 12-fold symmetric quasicrystals," J. Mater. Sci.: Mater. Electron. 12, 413-416 (2003). [CrossRef]
  28. J. Kepler, Harmonices Mundi, (Linz, 1619).
  29. K. Ueda, T. Dotera, and T. Gemma, "Photonic band structure calculations of two-dimensional Archimedean tiling patterns," Phys. Rev. B 75, 195122 (2007). [CrossRef]
  30. P. N. Suding and R. M. Ziff, "Site percolation thresholds for Archimedean lattices," Phys. Rev. E 60, 275 (1999). [CrossRef]
  31. B. Grünbaum and G. Shephard, Tilings and Patterns, (Freeman. New York, 1987)
  32. T. Hahn, International Tables for Crystallography Volume A: Space-group symmetry, (Springer, 2005).
  33. BandSOLVE, FullWave, RSoft Design Group Inc., URL: http://www.rsoftdesign.com
  34. K. S. Kunz and R. L. Lubbers, The Finite Difference Time Domain Method, (CRC Press, 1993).
  35. A. Taflove, Computational Electrodynamics-The Finite-Difference Time-Domain Method, (Artech House, Inc, 1995).
  36. C. Rockstuhl, U. Peschel, and F. Lederer, "Correlation between single-cylinder properties and bandgap formation in photonic structures," Opt. Lett. 31, 1741 (2006). [CrossRef] [PubMed]
  37. L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express 15, 15314 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited