OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4085–4093

Broadband IR supercontinuum generation using single crystal sapphire fibers

Jae Hun Kim, Meng-Ku Chen, Chia-En Yang, Jon Lee, Stuart (Shizhuo) Yin, Paul Ruffin, Eugene Edwards, Christina Brantley, and Claire Luo  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4085-4093 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, an investigation on broadband IR supercontinuum generation in single crystal sapphire fibers is presented. It is experimentally demonstrated that broadband IR supercontinuum spectrum (up to 3.2µm) can be achieved by launching ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension 115µm in diameter and 5cm in length, which covers both the near IR spectral region and the lower end of the mid-IR spectral range. Furthermore, the mechanism of supercontinuum generation in single crystal sapphire fibers is briefly addressed. When the fiber length is shorter than the dispersion length, the self-phase modulation dominates the broadening effect. In this case, the broad supercontinuum spectrum with a smooth profile can be obtained. However, when the fiber length is longer than the dispersion length, the soliton-related dynamics accompanied by the self-phase modulation dominates the broadening effect. There are discrete spikes in the spectrum (corresponding to different order solitons). The above assumption of supercontinuum generation mechanism is quantitatively modeled by the computer simulation program and verified by the experimental results. Thus, one can adjust the spectral profile by properly choosing the length of the sapphire fibers. The broad IR spectral nature of this supercontinuum source can be very useful in a variety of applications such as broadband LADAR, remote sensing, and multi-spectrum free space communications.

© 2008 Optical Society of America

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: February 6, 2008
Revised Manuscript: March 5, 2008
Manuscript Accepted: March 7, 2008
Published: March 11, 2008

Jae Hun Kim, Meng-Ku Chen, Chia-En Yang, Jon Lee, Stuart (Shizhuo) Yin, Paul Ruffin, Eugene Edwards, Christina Brantley, and Claire Luo, "Broadband IR supercontinuum generation using single crystal sapphire fibers," Opt. Express 16, 4085-4093 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007). [CrossRef]
  2. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, "Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007). [CrossRef] [PubMed]
  3. I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003). [CrossRef]
  4. J. C. Knight, T. Birks, P. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  6. K. Tamura, E. Ippen, H. Haus, and L. Nelson, "77-fs pulse generation from a stretched pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  8. I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  9. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  10. S. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003). [CrossRef]
  11. Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999). [CrossRef]
  12. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000). [CrossRef]
  13. R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008). [CrossRef]
  14. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, and F. J. Terry, Jr, "Mid-infrared supercontinuum generation to 4.5?m in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006). [CrossRef] [PubMed]
  15. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).
  16. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russel, "Spectrally smooth supercontinuum from 530nm to 3?m in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006). [CrossRef] [PubMed]
  17. J.-L. Adam, "Non-oxide glasses and their applications in optics," J. Non-Crystalline Solids 287, 401-404 (2001). [CrossRef]
  18. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russel, F. G. Omenetto, and A. J. Taylor "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002). [PubMed]
  19. T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006). [CrossRef]
  20. A. Major, F. Yoshino, I. Nikolakakos, J. Aitchison, and P. Smith, "Dispersion of the nonlinear refractive index in sapphire," Opt. Lett. 29, 602-604 (2004). [CrossRef] [PubMed]
  21. R. S. Feigelson, "Pulling optical fibers," J. Cryst. Growth 79, 669-680 (1986). [CrossRef]
  22. G. Merberg and J. Harrington, "Optical and mechanical properties of single-crystal sapphire optical fibers," Appl. Opt. 32, 3201-3209 (1993). [CrossRef] [PubMed]
  23. R. Nubling and J. Harrington, "Optical properties of single-crystal sapphire fibers," Appl. Opt. 36, 5934-5940 (1997). [CrossRef] [PubMed]
  24. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008). [CrossRef]
  25. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).
  26. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006). [CrossRef] [PubMed]
  27. M. Bass, Handbook of Optics, Vol. II (McGraw-Hill, Inc., New York, 1995).
  28. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., (John Wiley and Sons, Inc., New Jersey, 2004).
  29. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006). [CrossRef] [PubMed]
  30. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). [CrossRef] [PubMed]
  31. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2003). [CrossRef]
  32. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901-1-4 (2001). [CrossRef] [PubMed]
  33. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  34. W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989). [CrossRef]
  35. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005). [CrossRef]
  36. Redrawn from http://optical-material.optical-components.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited