OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4130–4144

Phase noise of whispering gallery photonic hyper-parametric microwave oscillators

Anatoliy A. Savchenkov, Enrico Rubiola, Andrey B. Matsko, Vladimir S. Ilchenko, and Lute Maleki  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4130-4144 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the experimental study of phase noise properties of a high frequency photonic microwave oscillator based on four wave mixing in calcium fluoride whispering gallery mode resonators. Specifically, the oscillator generates ~ 8.5 GHz signals with -120 dBc/Hz at 100 kHz from the carrier. The floor of the phase noise is limited by the shot noise of the signal received at the photodetector. We argue that the performance of the oscillator can be significantly improved if one uses extremely high finesse resonators, increases the input optical power, supersaturates the oscillator, and suppresses the residual stimulated Raman scattering in the resonator. We also disclose a method of extremely sensitive measurement of the integral dispersion of millimeter scale dielectric resonators.

© 2008 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5750) Optical devices : Resonators

ToC Category:
Nonlinear Optics

Original Manuscript: November 21, 2007
Revised Manuscript: February 22, 2008
Manuscript Accepted: February 22, 2008
Published: March 12, 2008

Anatoliy A. Savchenkov, Enrico Rubiola, Andrey B. Matsko, Vladimir S. Ilchenko, and Lute Maleki, "Phase noise of whispering gallery photonic hyper-parametric microwave oscillators," Opt. Express 16, 4130-4144 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Hosoya, K. Ohata, M. Funabashi, T. Inoue, and M. Kuzuhara, "V-band HJFET MMIC DROs with low phase noise, high power, and excellent temperature stability," IEEE Trans. Microwave Theory Tech. 51, 2250-2258 (2003). [CrossRef]
  2. B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, "SiGe bipolar transceiver circuits operating at 60 GHz," IEEE J. Solid-State Circuits 40, 156-167 (2005). [CrossRef]
  3. E. N. Ivanov and M. E. Tobar, "Low phase-noise microwave oscillators with interferometric signal processing," IEEE Trans. Microwave Theory Tech. 54, 3284-3294 (2006). [CrossRef]
  4. J. F. Gravel and J. S. Wight, "On the conception and analysis of a 12-GHz push-push phase-locked DRO," IEEE Trans. Microwave Theory Tech. 54, 153-159 (2006). [CrossRef]
  5. Y. Ji, X. S. Yao, and L. Maleki, "Compact optoelectronic oscillator with ultralow phase noise performance," Electron. Lett. 35, 1554-1555 (1999). [CrossRef]
  6. D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, "Improving short and long term frequency stability of the opto-electronic oscillator," Proc. IEEE International Frequency Control Symposium, 580-583 (2002).
  7. N. Yu, E. Salik, and L. Maleki, "Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration," Opt. Lett. 30, 1231-1233 (2005). [CrossRef] [PubMed]
  8. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 650-651 (2005). [CrossRef]
  9. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, "Narrowline-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305312 (1998). [CrossRef]
  10. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, "Optical resonators with ten million finesse," Opt. Express 15, 6768-6773 (2007). [CrossRef] [PubMed]
  11. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, "Whispering-gallery-mode resonators as frequency references: I. Fundamental limitations," J. Opt. Soc. Am. B 24, 1324-1335 (2007). [CrossRef]
  12. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, "Whispering-gallery-mode resonators as frequency references. II. Stabilization," J. Opt. Soc. Am. B 24, 2988-2997 (2007). [CrossRef]
  13. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity," Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  14. P. Del Haye, A. Schliesser, O. Arcizet, T. Wilkins, R. Holzwarth, T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007). [CrossRef]
  15. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Nonlinear optics with WGM crystalline resonators: advances and puzzles," 2004 Digest of the LEOS Summer Topical Meeting "WGM Microcavities" (2004).
  16. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, "Low Threshold Optical Oscillations in a Whispering Gallery Mode CaF2 Resonator," Phys. Rev. Lett. 93, 243905 (2004). [CrossRef]
  17. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, "All-optical photonic oscillator with high-Q whispering gallery mode resonators," Proc. IEEE International Topical Meeting on Microwave Photonics, 205-208 (2004).
  18. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, "Optical hyper-parametric oscillations in a whispering gallery mode resonator: threshold and phase diffusion," Phys. Rev. A 71, 033804 (2005). [CrossRef]
  19. A. B. Matsko, A. A. Savchenkov, D. Strekalov, and L Maleki, "High frequency photonic microwave oscillators based on WGM resonators," 2005 Digest of the LEOS Summer Topical Meetings, 113-114 (2005). [CrossRef]
  20. D. N. Klyshko, Photons and Nonlinear Optics (Taylor and Francis, New York, 1988).
  21. M. Haelterman, S. Trillo, and S. Wabnitz, "Additive-modulation-instability ring laser in the normal dispersion regime of a fiber," Opt. Lett. 17, 745-747 (1992) [CrossRef] [PubMed]
  22. S. Coen and M. Haelterman, "Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber," Phys. Rev. Lett. 79, 4139-4142 (1997). [CrossRef]
  23. S. Coen and M. Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett. 26, 39-41 (2001). [CrossRef]
  24. E. Rubiola, Phase noise and frequency stability in oscillators (Cambridge University Press, 2008 (in press), Online abridged version: E. Rubiola, "The Leeson effect - Phase noise in quasilinear oscillators," http://arxiv.org/abs/physics/0502143.
  25. D. B. Leeson, "A simple model of feed back oscillator noise spectrum," Proc. IEEE 54, 329330 (1966). [CrossRef]
  26. A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958). [CrossRef]
  27. J. R. Vig (chair.), "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology-Random Instabilities," (IEEE Standard 1139-1999), IEEE 1999.
  28. L. Maleki, A. A. Savchenkov, V. S. Ilchenko, and A. B. Matsko, "Whispering gallery mode lithium niobate micro-resonators for photonics applications," Proc. SPIE 5104 (2003). [CrossRef]
  29. M. Daimon and A. Masumura, "High-accuracy measurements of the refractive index and its temperature coeffi-cient of calcium fluoride in a wide wavelength range from 138 to 2326 nm," Appl. Opt. 41, 5275-5281 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited