OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4177–4191

High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide

Jan-Michael Brosi, Christian Koos, Lucio Claudio Andreani, Michael Waldow, Juerg Leuthold, and Wolfgang Freude  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4177-4191 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel electro-optic silicon-based modulator with a bandwidth of 78GHz, a drive voltage amplitude of 1V and a length of only 80µm is proposed. Such record data allow 100Gbit/s transmission and can be achieved by exploiting a combination of several physical effects. First, we rely on the fast and strong nonlinearities of polymers infiltrated into silicon, rather than on the slower free-carrier effect in silicon. Second, we use a Mach-Zehnder interferometer with slotted slow-light waveguides for minimizing the modulator length, but nonetheless providing a long interaction time for modulation field and optical mode. Third, with this short modulator length we avoid bandwidth limitations by RC time constants. The slow-light waveguides are based on a photonic crystal. A polymer-filled narrow slot in the waveguide center forms the interaction region, where both the optical mode and the microwave modulation field are strongly confined to. The waveguides are designed to have a low optical group velocity and negligible dispersion over a 1THz bandwidth. With an adiabatic taper we significantly enhance the coupling to the slow light mode. The feasibility of broadband slow-light transmission and efficient taper coupling has been previously demonstrated by us with calculations and microwave model experiments, where fabrication-induced disorder of the photonic crystal was taken into account.

© 2008 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides
(130.4110) Integrated optics : Modulators
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 4, 2008
Revised Manuscript: March 10, 2008
Manuscript Accepted: March 10, 2008
Published: March 12, 2008

Jan-Michael Brosi, Christian Koos, Lucio C. Andreani, Michael Waldow, Juerg Leuthold, and Wolfgang Freude, "High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40Gbit/s silicon optical modulator for high-speed applications," Electron. Lett. 43, 20072253 (2007). [CrossRef]
  2. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic polymer ring resonator modulation up to 165GHz," IEEE J. Sel. Top. Quantum Electron. 13,104-110 (2007). [CrossRef]
  3. D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-2-613. [CrossRef] [PubMed]
  4. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nature Photonics 1, 180-185 (2007). [CrossRef]
  5. E. M. McKenna, A. S. Lin, A. R. Mickelson, R. Dinu, and D. Jin, "Comparison of r33 values for AJ404 films prepared with parallel plate and corona poling," J. Opt. Soc. Am. B 24, 2888-2892 (2007). [CrossRef]
  6. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5216. [CrossRef] [PubMed]
  7. G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, "Design and fabrication of segmented, slotted waveguides for electro-optic modulation," Appl. Phys. Lett. 91, 143109 (2007). [CrossRef]
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature (London) 435, 325-327 (2005). [CrossRef] [PubMed]
  9. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140-3148 (2007) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-6-3140. [CrossRef] [PubMed]
  10. K. K. McLauchlan and S. T. Dunham, "Analysis of a compact modulator incorporating a hybrid silicon/electrooptic polymer waveguide," IEEE J. Sel. Top. Quantum Electron. 12, 1455-1460 (2006). [CrossRef]
  11. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, "High speed silicon photonic crystal waveguide modulator for low voltage operation," Appl. Phys. Lett. 90, 071105 (2007). [CrossRef]
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  13. J.-M. Brosi, J. Leuthold, and W. Freude, "Microwave-frequency experiments validate optical simulation tools and demonstrate novel dispersion-tailored photonic crystal waveguides," J. Lightwave Technol. 25, 2502-2510 (2007). [CrossRef]
  14. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  15. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B 73, 235114 (2006). [CrossRef]
  16. C. Koos, P. Vorreau, P. Dumon, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "Highly-nonlinear silicon photonic slot waveguide," in Technical Digest of 2008 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, San Diego (CA), USA, Feb. 24-28, 2008, postdeadline paper PDP 25.
  17. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  18. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-20-9444. [CrossRef] [PubMed]
  19. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927. [CrossRef] [PubMed]
  20. G. Lecamp, J. P. Hugonin, and P. Lalanne, "Theoretical and computational concepts for periodic optical waveguides," Opt. Express 15, 11042-11060 (2007) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-18-11042. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited