OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4206–4216

High-order dispersion in chirped-pulse oscillators

Vladimir L. Kalashnikov, Alma Fernández, and Alexander Apolonski  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4206-4216 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of high-order dispersion on a chirped-pulse oscillator operating in the positive dispersion regime were studied both theoretically and experimentally. It was found that odd and negative even high-order dispersions impair the oscillator stability owing to resonance with the dispersion waves, but can broaden the spectrum as in the case of continuum generation in the fibers. Positive fourth-order dispersion enhances the stability and shifts the stability range into negative dispersion. The destabilization mechanism was found to be a parametrical instability which causes noisy mode locking around zero dispersion.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 22, 2008
Revised Manuscript: March 7, 2008
Manuscript Accepted: March 8, 2008
Published: March 12, 2008

Vladimir L. Kalashnikov, Alma Fernández, and Alexander Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high-peak-power Kerr-lens mode-locked TiAl2O3 laser with a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999). [CrossRef]
  2. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. Hänsch, and F. Krausz, "Controlling the phase evolution of few cycle light pulses," Phys. Rev. Lett. 85, 740-743 (2000). [CrossRef] [PubMed]
  3. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunnighan, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001). [CrossRef]
  4. A. M. Kowalevicz, A. Tucay Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator," Opt. Lett. 28, 1597-1599 (2003). [CrossRef] [PubMed]
  5. B. Proctor, E. Westwig, and F. Wise, "Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654-1656 (1993). [CrossRef] [PubMed]
  6. J. M. Dudley, S. M. Boussen, D. M. J. Cameron, and J. D. Harvey, "Complete characterization of a self-mode-locked Ti:sapphire laser in the vicinity of zero group-delay dispersion by frequency-resolved optical gating," Appl. Opt. 38, 3308-3315 (1999). [CrossRef]
  7. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005). [CrossRef]
  8. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to highpower femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004). [CrossRef] [PubMed]
  9. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005). [CrossRef]
  10. J. M. Dudley, Ch. Finot, D. J. Richardson, and G. Millot, "Self-similarity in ultrafast nonlinear optics", Nature Phy. 3, 597 (2007). [CrossRef]
  11. Y. Logvin and H. Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007). [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (Academic, San Diego, Calif., 1995).
  13. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, "Soliton at the zero-group-dispersion wavelength of a singlemodel fiber," Opt. Lett. 12, 628-630 (1987). [CrossRef] [PubMed]
  14. P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by "solitons" at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990). [CrossRef] [PubMed]
  15. J. N. Elgin, "Soliton propagation in an optical fiber with third-order dispersion," Opt. Lett. 15, 1409-1410 (1992). [CrossRef]
  16. V. E. Zakharov and E. A. Kuznetsov, "Optical solitons and quasisolitons," J. Exp. Theor. Phys. 86, 1035-1046 (1998). [CrossRef]
  17. M. Santagiustina and E. M. Wright, "Supression of third-order dispersion radiation in solid-state soliton lasers" Opt. Lett. 20, 2267-2269 (1995). [CrossRef] [PubMed]
  18. Zh. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, "Chirped femtosecond solitonlike laser pulse form with selffrequency shift," Phys. Rev. Lett. 89, 263901 (2002). [CrossRef] [PubMed]
  19. M. Santagiustina, "Third-order dispersion radiation in solid-state solitary laser," J. Opt. Soc. Am. B 14, 1484-1495 (1997). [CrossRef]
  20. F. W. Wise, I. A. Walmsley, and C. L. Tang, "Simultaneous formation of solitons and diespersive waves in a femtosecond ring dye laser" Opt. Lett. 13, 129-131 (1988). [CrossRef] [PubMed]
  21. H. A. Haus, J. D. Moores and L. E. Nelson, "Effect of third-order dispersion on passive mode locking," Opt. Lett. 18, 51-53 (1993). [CrossRef] [PubMed]
  22. M. L. Dennis and I. N. Duling III, "Third-order dispersion in femtosecond fiber lasers," Opt. Lett. 19, 1750-1752 (1994). [CrossRef] [PubMed]
  23. A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, and V. Stoev, "Ultrafast laser and amplifier sources," Appl. Phys. B 65, 161-174 (1997). [CrossRef]
  24. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted in optical fibers" Phys. Rev. E 51, 2602-2607 (1995).
  25. T. Brabec and S. M. J. Kelly, "Third-order dispersion as limiting factor to mode locking in femtosecond solitary lasers," Opt. Lett. 18, 2002-2004 (1993). [CrossRef] [PubMed]
  26. Ch. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, "Ultrabroadband femtosecond lasers," IEEE J. Quantum Electron. 30, 1100-1114 (1994). [CrossRef]
  27. J. Herrmann, V. P. Kalosha, and M. Müller, "Highr-order phase dispersions in femtosecond Kerr-lens mode-locked solid-state lasers: sideband generation and pulse splitting," Opt. Lett. 22, 236-238 (1997). [CrossRef] [PubMed]
  28. V. P. Kalosha, M. Müller, J. Herrmann, and S. Gatz, "Spatiotemporal model of femtosecond pulse generation in Kerrlens mode-locked solid-state lasers," J. Opt. Soc. Am. B 15, 535-550 (1998). [CrossRef]
  29. V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, "Spectral poperties of the Kerr-lens mode-locked Cr4+:YAG laser," J. Opt. Soc. Am. B 20, 2084-2092 (2003). [CrossRef]
  30. Y. Logvin, V. P. Kalosha, and H. Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985-991 (2007). [CrossRef] [PubMed]
  31. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991). [CrossRef]
  32. E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in te normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Letters 82, 524-528 (2005). [CrossRef]
  33. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006). [CrossRef]
  34. A. Höök and M. Karlssson, "Ultrashort solitons at the minimum-dispersion wavelength: effect of fourth-order dispersion," Opt. Lett. 18, 1388-1390 (1993). [CrossRef] [PubMed]
  35. Y. H. Cha, B. Yoo, J. Rhee, and Ch. Kim, "Numerical analysis of sideband generation in femtosecond solid-state lasers with high-order dispersion," J. Korean Phy. Soc. 44, 859-863 (2004).
  36. V. I. Karpman, "Solitons of the fourth order nonlinear Schrödinger equation," Physics Letters A 193, 355-358 (1994). [CrossRef]
  37. J. Fujioka and A. Espinosa, "Soliton-like solution of an extended NLS equation existing in resonance with linear dispersive waves," J. Physical Sociaty of Japan 66, 2601-2607 (1997). [CrossRef]
  38. M. Piché, J.-F. Cormier, and X. Zhu, "Bright optical soliton in the presence of fourth-order dispersion," Opt. Lett. 21, 845-847 (1996). [CrossRef] [PubMed]
  39. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. Zhou, and Ch.-P. Huang, "Fourth-order dispersion limited solitary pulses," Opt. Lett. 1465-1467 (1994). [CrossRef] [PubMed]
  40. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997). [CrossRef]
  41. N. N. Akhmediev and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman & Hall, London, 1997).
  42. A. Chernykh and S. K. Turitsyn, "Soliton and collapse regimes of pulse generation in passively mode-locking laser systems," Opt. Lett. 20, 398-400 (1995). [CrossRef] [PubMed]
  43. J. Herrmann, "Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain," J. Opt. Soc. Am. B 11, 498-512 (1994). [CrossRef]
  44. R. J. Deissler and H. R. Brand, "Periodic, quasipereodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation," Phys. Rev. Lett. 72, 478-481 (1994). [CrossRef] [PubMed]
  45. V. L. Kalashnikov and A. Chernykh, "Spectral anomalies and stability of chirped-pulse oscillators," Phys. Rev. A 75, 033820 (2007). [CrossRef]
  46. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  47. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, "Multipulse operation and limits of the Kerr-lens mode locking stability," IEEE J. Quantum Electron. 39, 323-336 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited