OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4237–4249

Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding

Thomas H. Chia, Anne Williamson, Dennis D. Spencer, and Michael J. Levene  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 4237-4249 (2008)
http://dx.doi.org/10.1364/OE.16.004237


View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon fluorescence lifetime imaging (FLIM) of molecules can reveal important information on the local microenvironment. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic co-enzyme, has a lifetime that depends strongly on enzymatic binding. We present a custom image-processing algorithm for raw fluorescence lifetime and amplitude data that produces an image showing spatially distinct NADH fluorescence lifetimes in slices of rat and human brain. NADH FLIM images were collected in control and epileptic rat tissue. Differences in spatial patterns of NADH lifetimes support the hypothesis that NADH binding, and thus metabolic capacity, is significantly different between groups. This type of analysis can provide information on metabolic states in pathological material.

© 2008 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.5810) Medical optics and biotechnology : Scanning microscopy
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(180.2520) Microscopy : Fluorescence microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 22, 2008
Revised Manuscript: March 5, 2008
Manuscript Accepted: March 11, 2008
Published: March 13, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Thomas H. Chia, Anne Williamson, Dennis D. Spencer, and Michael J. Levene, "Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding," Opt. Express 16, 4237-4249 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci., U.S.A. 100, 7075-7080 (2003). [CrossRef] [PubMed]
  2. P. Lipton, "Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices," Biochem. J. 136, 999-1009 (1973). [PubMed]
  3. K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, and W. W. Webb, "Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis," Science 305, 99-103 (2004). [CrossRef] [PubMed]
  4. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005). [CrossRef] [PubMed]
  5. K. Suhling, P. M. French, and D. Phillips, "Time-resolved fluorescence microscopy," Photochem. Photobiol. Sci. 4, 13-22 (2005). [CrossRef]
  6. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci., U.S.A. 89, 1271-1275 (1992). [CrossRef] [PubMed]
  7. S. J. Strickler and R. A. Berg, "Relationship between absorption intensity and fluorescence lifetime of molecules," J. Chem. Phys. 37, 814-822 (1962). [CrossRef]
  8. L. Hertz, L. Peng, and G. A. Dienel, "Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis," J. Cereb. Blood Flow Metab. 27, 219-249 (2007). [CrossRef]
  9. W. J. Chu, H. P. Hetherington, R. I. Kuzniecky, T. Simor, G. F. Mason, and G. A. Elgavish, "Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T," Neurology 51, 472-479 (1998). [PubMed]
  10. E. M. Cornford, M. N. Gee, B. E. Swartz, M. A. Mandelkern, W. H. Blahd, E. M. Landaw, and A. V. Delgado-Escueta, "Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx," Ann. Neurol. 43, 801-808 (1998). [CrossRef] [PubMed]
  11. H. Qu, H. Eloqayli, B. Müller, J. Aasly, and U. Sonnewald, "Glial-neuronal interactions following kainate injection in rats," Neurochem. Int. 42, 101-106 (2003). [CrossRef]
  12. T. M. Melø, A. Nehlig, and U. Sonnewald, "Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy," J. Cereb. Blood Flow Metab. 25, 1254-1264 (2005). [CrossRef] [PubMed]
  13. T. J. Ashwood, B. Lancaster, and H. V. Wheal, "Intracellular electrophysiology of CA1 pyramidal neurones in slices of the kainic acid lesioned hippocampus of the rat," Exp. Brain Res. 62, 189-198 (1986). [CrossRef] [PubMed]
  14. C. L. Meier and F. E. Dudek, "Spontaneous and stimulation-induced synchronized burst afterdischarges in the isolated CA1 of kainate-treated rats," J. Neurophysiol. 76, 2231-2239 (1996). [PubMed]
  15. O. Kann, S. Schuchmann, K. Buchheim, and U. Heinemann, "Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat," Neuroscience 119, 87-100 (2003). [CrossRef] [PubMed]
  16. O. Kann, R. Kovacs, M. Njunting, C. J. Behrens, J. Otahal, T. N. Lehmann, S. Gabriel, and U. Heinemann, "Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans," Brain 128, 2396-2407 (2005). [CrossRef] [PubMed]
  17. D. A. McCormick and A. Williamson, "Convergence and divergence of neurotransmitter action in human cerebral cortex," Proc. Natl. Acad. Sci., U.S.A. 86, 8098-8102 (1989). [CrossRef] [PubMed]
  18. W. R. Chen, S. Lee, K. Kato, D. D. Spencer, G. M. Shepherd, and A. Williamson, "Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex," Proc. Natl. Acad. Sci. U.S.A. 93, 8011-8015 (1996). [CrossRef] [PubMed]
  19. J. DeFelipe, "Cortical microanatomy and human brain disorders: epilepsy," Cortex 40, 232-233 (2004). [CrossRef] [PubMed]
  20. L. D. Errante, A. Williamson, D. D. Spencer, and O. A. Petroff, "Gabapentin and vigabatrin increase GABA in the human neocortical slice," Epilepsy Res. 49, 203-210 (2002). [CrossRef] [PubMed]
  21. B. N. Smith and F. E. Dudek, "Network interactions mediated by new excitatory connections between CA1 pyramidal cells in rats with kainate-induced epilepsy," J. Neurophysiol. 87,1655-1658 (2002). [PubMed]
  22. M. Tsacopoulos and P. J. Magistretti, "Metabolic coupling between glia and neurons," J. Neurosci. 16, 877-885 (1996). [PubMed]
  23. C. Dubé, S. Boyet, C. Marescaux, and A. Nehlig, "Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat," Exp. Neurol. 162, 146-157 (2000). [CrossRef] [PubMed]
  24. W. A. Gomes, F. A. Lado, N. C. de Lanerolle, K. Takahashi, C. Pan, and H. P. Hetherington, "Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy," Magn. Reson. Med. 58, 230-235 (2007). [CrossRef] [PubMed]
  25. S. Alvestad, J. Hammer, E. Eyjolfsson, H. Qu, O. P. Ottersen, and U. Sonnewald, "Limbic structures show altered glial-neuronal metabolism in the chronic phase of kainate induced epilepsy," Neurochem. Res.33, 257-266 (2007).
  26. S. Pelet, M. J. R. Previte, L. H. Laiho and P. T. C. So, "A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation," Biophys. J. 87, 2807-2817 (2004). [CrossRef] [PubMed]
  27. P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, "Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM," Proc. SPIE 5700, DOI:10,1117/12.590510 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited