OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4250–4262

Effects of probe contact pressure on in vivo optical spectroscopy

Yalin Ti and Wei-Chiang Lin  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4250-4262 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3069 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The short- and long-term effects of probe contact pressure on in vivo diffuse reflectance and fluorescence spectroscopy were investigated using an animal model. Elevation in probe contact pressure induced major profile alterations in the diffuse reflectance spectra between 400 and 650 nm, and led to significant intensity increases in the fluorescence spectra. The pressure threshold that was required to induce statistically significant spectral alterations was dependent upon the type of tissue. The observed spectral alterations may be attributed to decreases in local blood volume, blood oxygenation, and tissue metabolism, resulting from high probe contact pressure.

© 2008 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 14, 2008
Revised Manuscript: February 18, 2008
Manuscript Accepted: March 4, 2008
Published: March 13, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Yalin Ti and Wei-Chiang Lin, "Effects of probe contact pressure on in vivo optical spectroscopy," Opt. Express 16, 4250-4262 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy: current status of translational research," Cancer Biol. Ther. 3, 259-267 (2004). [CrossRef] [PubMed]
  2. C. R. Buttemere, R. S. Chari, C. D. Anderson, M. K. Washington, A. Mahadevan-Jansen, and W. C. Lin, "In vivo assessment of thermal damage in the liver using optical spectroscopy," J. Biomed. Opt. 9, 1018-1027 (2004). [CrossRef] [PubMed]
  3. K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, "Intraoperative myocardial ischemia detection with laser-induced fluorescence," J. Thorac. Cardiovasc. Surg. 107, 220-225 (1994). [PubMed]
  4. G. E. Kochiadakis, S. I. Chrysostomakis, M. D. Kalebubas, G. M. Filippidis, I. G. Zacharakis, T. G. Papazoglou, and P. E. Vardas, "The role of laser-induced fluorescence in myocardial tissue characterization: an experimental in vitro study," Chest 120, 233-239 (2001). [CrossRef] [PubMed]
  5. G. D. Luker and K. E. Luker, "Optical imaging: current applications and future directions," J. Nucl. Med. 49, 1-4 (2008). [CrossRef]
  6. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  7. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000). [CrossRef] [PubMed]
  8. K. Sokolov, M. Follen, and R. Richards-Kortum, "Optical spectroscopy for detection of neoplasia," Curr. Opin. Chem. Biol. 6, 651-658 (2002). [CrossRef] [PubMed]
  9. G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  10. W. C. Lin, A. Mahadevan-Jansen, M. D. Johnson, R. J. Weil, and S. A. Toms, "In vivo optical spectroscopy detects radiation damage in brain tissue," Neurosurgery 57, 518-525; discussion 518-525 (2005). [CrossRef] [PubMed]
  11. U. Mahmood and R. Weissleder, "Near-infrared optical imaging of proteases in cancer," Mol. Cancer. Ther. 2, 489-496 (2003). [PubMed]
  12. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, "Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm," Appl. Opt. 43, 2846-2860 (2004). [CrossRef] [PubMed]
  13. U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003). [CrossRef] [PubMed]
  14. E. K. Chan, B. Sorg, D. Protsenko, Oapos, M. Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996). [CrossRef]
  15. W. Chen, R. Liu, K. Xu, and R. K. Wang, "Influence of contact state on NIR diffuse reflectance spectroscopy in vivo," J. Phys. D 38, 2691-2695 (2005). [CrossRef]
  16. A. Murray and D. Marjanovic, "Optical assessment of recovery of tissue blood supply after removal of externally applied pressure," Med. Biol. Eng. Comput. 35, 425-427 (1997). [CrossRef] [PubMed]
  17. A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004). [CrossRef] [PubMed]
  18. K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004). [CrossRef] [PubMed]
  19. M. G. Shim, L.-M. Wong Kee Song, N. E. Marcon, and B. C. Wilson, "In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility during Clinical Gastrointestinal Endoscopy and Para," Photochem. Photobiol. 72, 146-150 (2000). [PubMed]
  20. W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000). [CrossRef] [PubMed]
  21. W. J. Bowen, "The absorption spectra and extinction coefficients of myoglobin," J. Biol. Chem. 179, 235-245 (1949). [PubMed]
  22. R. Junowicz-Kocholaty and T. R. Hogness, "The spectroscopic determination of cytochrome c and its distribution in some mammalian tissues," J. Biol. Chem. 129, 569-574 (1939).
  23. R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986). [CrossRef] [PubMed]
  24. S. Prahl, "Optical absorption of hemoglobin" (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  25. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997). [CrossRef] [PubMed]
  26. R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003). [CrossRef] [PubMed]
  27. D. Voet and J. Voet, Biochemistry, 3rd ed., (John Wiley and Sons, Hoboken, NJ, 2004), Vol. 1.
  28. B. Chance, "Mitochondrial NADH redox state, monitoring discovery and deployment in tissue," Methods Enzymol. 385, 361-370 (2004). [CrossRef] [PubMed]
  29. B. Chance, S. Nioka, W. Warren, and G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Med. Biol. 566, 231-242 (2005). [CrossRef]
  30. A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982). [CrossRef] [PubMed]
  31. A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol.-Cell Physiol. 292, C615-640 (2007). [CrossRef]
  32. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119-25126 (2005). [CrossRef] [PubMed]
  33. B. Chance, "Spectrophotometric and kinetic studies of flavoproteins in tissues, cell suspensions, mitochondria and their fragments," in Flavins and flavoproteins, S. EC, ed., (Elsevier, New York, 1996), pp. 496-510.
  34. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluoresence in a turbid medium," Appl. Opt. 32, 3585 (1993). [CrossRef] [PubMed]
  35. Q. Zhang, M. Muller, J. Wu, and M. Feld, "Turbity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000). [CrossRef]
  36. Y. C. Fung, Biomechanics : mechanical properties of living tissues, 2nd ed. (Springer-Verlag, New York, 1993), pp. 53, p. 568 .
  37. W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001). [CrossRef] [PubMed]
  38. S. A. Toms, W.-C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative Optical Spectroscopy Identifies Infiltrating Glioma Margins with High Sensitivity," Neurosurgery 57, 382-391 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited