OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4263–4269

Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid

Jiangbing Du, Yange Liu, Zhi Wang, Zhanyuan Liu, Bing Zou, Long Jin, Bo Liu, Guiyun Kai, and Xiaoyi Dong  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4263-4269 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-core photonic bandgap fiber (PBGF) is demonstrated by infusing a high-index liquid into a dual-core air-silica photonic crystal fiber (PCF). Extremal couplings have been experimentally observed. The temperature tunable characteristics of the dual-core PBGF’s bandgap guiding and dual-core coupling are experimentally and numerically investigated. When we rise temperature, the dual-core PBGFs’ bandgaps have been changed: compression of bandwidth, blue-shift and depression of the guiding band. Especially, the dual-core coupling is temperature tunable because of the tunability of the infusion liquid’s index. We find that the rise of temperature increases the coupling length which results in the blue-shift of the resonant peak wavelengths with a speed of 1.9nm/°C, for a 20mm dual-core PBGF.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystal Fibers

Original Manuscript: January 14, 2008
Revised Manuscript: March 5, 2008
Manuscript Accepted: March 10, 2008
Published: March 13, 2008

Jiangbing Du, Yange Liu, Zhi Wang, Zhanyuan Liu, Bing Zou, Long Jin, Bo Liu, Guiyun Kai, and Xiaoyi Dong, "Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid," Opt. Express 16, 4263-4269 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  3. K. Saitoh, Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express 11, 3188-3195 (2003). [CrossRef] [PubMed]
  4. N. J. Florous, K. Saitoh, T. Murao, M. Koshiba, and M. Skorobogatiy, "Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters," Opt. Express 14, 4861-4872 (2006). [CrossRef] [PubMed]
  5. J. Lægsgaard, "Directional coupling in twin-core photonic bandgap fibers," Opt. Lett. 30, 3281-3283 (2005).
  6. Z. Wang, G. Y. Kai, Y. G. Liu, J. F. Liu, C. S. Zhang, T. T. Sun, C. Wang, W. G. Zhang, S. Z. Yuan, and X. Y. Dong, "Coupling and decoupling of dual-core photonic bandgap fibers," Opt. Lett. 30, 2542-2544 (2005). [CrossRef] [PubMed]
  7. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express. 15, 4795-4803 (2007). [CrossRef] [PubMed]
  8. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999). [CrossRef]
  9. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). [CrossRef]
  10. R. T. Bise, R. S. Windeler, K. S. Kranz, C.  Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communications Conference 2002, 466- 468, 17-22 Mar 2002.
  11. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  12. F. Du, Y. Lu, and S. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  13. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  14. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express. 12, 5857-5871 (2004). [CrossRef] [PubMed]
  15. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006). [CrossRef] [PubMed]
  16. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]
  17. T. T. Alkeskjold and A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007) [CrossRef] [PubMed]
  18. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser and B. J. Eggleton, "Resonance and scattering in microstructured optical fiber," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  19. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, TheMIT  Photonic-Bands Package home page http://ab-initio.mit.edu/mpb/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited