OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4316–4321

The cavity dispersion noncoaxiality effects on broadband few-cycle pulse generation in Ti:sapphire laser

Zhongxing Jiao, Zhiling Huang, Jinhui Wen, Weizhu Lin, and Tianshu Lai  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 4316-4321 (2008)
http://dx.doi.org/10.1364/OE.16.004316


View Full Text Article

Enhanced HTML    Acrobat PDF (4701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The cavity dispersion noncoaxiality (CDN) effects on broadband few-cycle pulse generation of a Kerr-lens mode-locked Ti:sapphire laser is investigated theoretically and experimentally. It is found that the influence of CDN is comparable with that of self-focusing and self-phase-modulation in the frequency-dependent mode size (FDMS) effects. Spectra extending from 680 nm to 1020 nm with pulse duration shorter than three optical cycles are favorably generated under the minimum CDN in the vicinity of the coaxial point of the sub-cavity.

© 2008 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.5550) Ultrafast optics : Pulses
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 3, 2008
Revised Manuscript: March 5, 2008
Manuscript Accepted: March 8, 2008
Published: March 14, 2008

Citation
Zhongxing Jiao, Zhiling Huang, Jinhui Wen, Weizhu Lin, and Tianshu Lai, "The cavity dispersion noncoaxiality effects on broadband few-cycle pulse generation in Ti:sapphire laser," Opt. Express 16, 4316-4321 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4316


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Morgener, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : Sapphire laser," Opt. Lett. 24, 411-413 (1999). [CrossRef]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti: Sapphire laser producing pulses in the two cycle regime," Opt. Lett. 24, 631-633 (1999). [CrossRef]
  3. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Tisapphire laser," Opt. Lett. 26, 373-375 (2001). [CrossRef]
  4. T. R. Schibli, O. Kuzucu, J. W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, "Toward Single-Cycle Laser Systems," IEEE J. Sel. Top. Quantum Electron. 9, 990-1001 (2003). [CrossRef]
  5. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, "Dispersion-managed mode locking," J. Opt. Soc. Am. B 16, 1999-2004 (1999). [CrossRef]
  6. S. T. Cundiff, W. H. Knox, E. P. Ippen, and H. A. Haus, "Frequency-dependent mode size in broadband Kerr-lens mode locking," Opt. Lett. 21, 662-664 (1996). [CrossRef] [PubMed]
  7. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, "Sub-10-fs operation of Kerr-lens mode-locked lasers," Opt. Lett. 21, 1493-1495 (1996). [CrossRef] [PubMed]
  8. M. Ramaswamy-Paye and J. G. Fujimoto, "Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers," Opt. Lett. 21, 1756-1758 (1994). [CrossRef]
  9. D. Kopt, G. J. Spühler, K. J. Weingarten, and U. Keller, "Mode-locked laser cavities with a single prism for dispersion compensation," Appl. Opt. 35, 912-915 (1996). [CrossRef]
  10. B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, "Compact resonator design for mode locked solid-state lasers," Appl. Phys. B 65, 213-220 (1997). [CrossRef]
  11. R. Paschotta, J. Aus der Au, and U. Keller, "Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities," J. Opt. Soc. Am. B 17, 646-651 (2000). [CrossRef]
  12. Y. Chen, X. Zheng, T. Lai, X. Xu, D. Mo, and W. Lin, "Resonators for self-mode-locking Tisapphire lasers without apertures," Opt. Lett. 21, 1469-1471 (1996). [CrossRef] [PubMed]
  13. R. Zhang, J. Ma, D. Pang, J. Sun, and Q. Wang, "Spatial chirp and angular dispersion of a laser crystal for a four-mirror cavity Kerr-lens mode-locked laser," Appl. Opt. 43, 2184-2191 (2004). [CrossRef] [PubMed]
  14. V. Magni, G. Cerullo, and S. D. Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through kerr media," Opt. Commun. 96, 348-355 (1993). [CrossRef]
  15. J. Herrmann, "Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain," J. Opt. Soc. Am. B 11, 498-512 (1994). [CrossRef]
  16. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, G. Jung, T. Le, and A. Stingl, "Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003). [CrossRef] [PubMed]
  17. A. L. Lytle, E. Gershgoren, R. I. Tobey, M. M. Murnane, H. C. Kapteyn, and Dirk Müller, "Use of a simple cavity geometry for low and high repetition rate modelocked Ti:sapphire lasers," Opt. Express 12, 1409-1416 (2004). [CrossRef] [PubMed]
  18. M. S. Kirchner, T. M. Fortier, A. Bartels, and S. A. Diddams, "A low-threshold self-referenced Ti:Sapphire optical frequency comb," Opt. Express 14, 9531-9536 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited