OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4347–4365

Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method

Philippe Giaccari, Jean-Daniel Deschênes, Philippe Saucier, Jérôme Genest, and Pierre Tremblay  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 4347-4365 (2008)
http://dx.doi.org/10.1364/OE.16.004347


View Full Text Article

Enhanced HTML    Acrobat PDF (1313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach is described to compensate the variations induced by laser frequency instabilities in the recently demonstrated Fourier transform spectroscopy that is based on the RF beating spectra of two frequency combs generated by mode-locked lasers. The proposed method extracts the mutual fluctuations of the lasers by monitoring the beating signal for two known optical frequencies. From this information, a phase correction and a new time grid are determined that allow the full correction of the measured interferograms. A complete mathematical description of the new active spectroscopy method is provided. An implementation with fiber-based mode-locked lasers is also demonstrated and combined with the correction method a resolution of 0.067 cm-1 (2 GHz) is reported. The ability to use slightly varying and inexpensive frequency comb sources is a significant improvement compared to previous systems that were limited to controlled environment and showed reduced spectral resolution. The fast measurement rate inherent to the RF beating principle and the ease of use brought by the correction method opens the venue to many applications.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopy

History
Original Manuscript: January 24, 2008
Revised Manuscript: March 9, 2008
Manuscript Accepted: March 13, 2008
Published: March 14, 2008

Citation
Philippe Giaccari, Jean-Daniel Deschênes, Philippe Saucier, Jerome Genest, and Pierre Tremblay, "Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method," Opt. Express 16, 4347-4365 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-4 (2004). [CrossRef] [PubMed]
  2. A. Schliesser, M. Brehm, F. Keilmann, and D.W. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-38 (2005). [CrossRef] [PubMed]
  3. D. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer," US patent 5748309 (1998).
  4. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, "Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy," Appl. Phys. Lett. 88, 241104 (2006). [CrossRef]
  5. I. Coddington, W. Swann, and N. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys. Rev. Lett. 100, 013902 (2008). [CrossRef] [PubMed]
  6. S. Schiller, "Spectrometry with frequency combs," Opt. Lett. 27, 766-768 (2002). [CrossRef]
  7. M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006). [CrossRef] [PubMed]
  8. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-7 (1992). [CrossRef]
  9. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited