OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4443–4451

Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation

Chin-ping Yu, Jia-hong Liou, Sheng-shuo Huang, and Hung-chun Chang  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4443-4451 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have theoretically investigated the dispersion characteristics of dispersion compensating fibers based on dual-core liquid-filled PCFs. A very high negative chromatic dispersion value D=-19000 ps/(nm-km) can be achieved at 1.55-µm wavelength by an appropriate design. By varying the geometry of the PCF and the index of the filling liquid, the phase-matching wavelength and dispersion values are shown to be well tuned to desired values. The proposed structure also demonstrates good tunable properties with operation temperature for optical communication systems.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: January 22, 2008
Revised Manuscript: March 13, 2008
Manuscript Accepted: March 14, 2008
Published: March 18, 2008

Chin-ping Yu, Jia-hong Liou, Sheng-shuo Huang, and Hung-chun Chang, "Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation," Opt. Express 16, 4443-4451 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Garthe, R. E. Epworth, W. S. Lee, A. Hadjifotiou, C. P. Chew, T. Bricheno, A. Fielding, H. N. Rourke, S. R. Barker, K. C. Byron, R. S. Baulcomb, S. M. Ohja, and D. Clements, "Adjustable dispersion equalizer for 10 and 20 Gbit/s over distances up to 160km," Electron. Lett. 30, 2159-2160 (1994). [CrossRef]
  2. B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H.-F. Liu, "Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 mm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength," IEEE Photon. Technol. Lett. 7, 494-496 (1995). [CrossRef]
  3. K. Takiguchi, K. Okamato, and K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightwave Technol. 14, 2003-2011 (1996). [CrossRef]
  4. C. D. Poole, J. M. Weisenfeld, and D. J. Giovanni, "Elliptical-core dual-mode fiber dispersion compensator," IEEE Photon. Technol. Lett. 5, 194-197 (1993). [CrossRef]
  5. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000). [CrossRef]
  6. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996). [CrossRef]
  7. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual cocentric core fibre," Electron. Lett. 36, 1689-1691 (2000). [CrossRef]
  8. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000). [CrossRef]
  9. K. Pande and B. P. Pal, "Design optimization of a dual-core dipersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers," Appl. Opt. 42, 3785-3791 (2003). [CrossRef] [PubMed]
  10. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330, (1999). [CrossRef]
  11. C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004). [CrossRef]
  12. L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photon. Tech. Lett. 15, 540-542 (2003). [CrossRef]
  13. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, "Characterization of microstructured optical fibers for wideband dispersion compensation," J. Opt. Soc. Am. A 20, 1958-1962 (2003). [CrossRef]
  14. L. P. Shen, W.-P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol. 21, 1644-1651 (2003). [CrossRef]
  15. B. Zsigri, J. Laegsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A: Pure Appl. Opt. 6, 717-720 (2004). [CrossRef]
  16. Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photon. Technol. Lett. 16, 1516-1518 (2004). [CrossRef]
  17. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004). [CrossRef] [PubMed]
  18. A. Huttunen and P. Törmä, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-627. [CrossRef] [PubMed]
  19. S. Yang, Y. Zhang, X. Peng, Y. Lu, A. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express 14, 3015-3023 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-3015. [CrossRef] [PubMed]
  20. S. Kim, C. S. Kee, D. K. Ko, J. Lee, and K. Oh, "A dual-concentric-core photonic crystal fiber for broadband dispersion compensation," J. Korean Phys. Soc. 49, 1434-1437 (2006).
  21. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004). [CrossRef]
  22. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  23. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6800. [CrossRef] [PubMed]
  24. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014. [CrossRef] [PubMed]
  25. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of function microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2005). [CrossRef]
  26. M.  Sasaki, T.  Ando, S.  Nogawa, and K.  Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys.  41, 4350-4355 (2002). [CrossRef]
  27. C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165. [CrossRef] [PubMed]
  28. Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853. [PubMed]
  29. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3341. [CrossRef] [PubMed]
  30. P. J. Chiang, C. P. Yu, and H. C. Chang, "Robust calculation of chromatic dispersion coefficients of optical fibers from numerically determined effective indices using Chebyshev-Langrange interpolation polynomials," IEEE J. Lightwave Technol. 24, 4411-4416 (2006). [CrossRef]
  31. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541. [CrossRef] [PubMed]
  32. L. M. Xiao, W. Jin, M. S. Demokan, H. L. Ho, H. Y. Tam, J. Ju, and J. Yu, "Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers," Opt. Lett. 30, 1791-1793 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited