OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4479–4486

Full phase and amplitude control of holographic optical tweezers with high efficiency

Alexander Jesacher, Christian Maurer, Andreas Schwaighofer, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4479-4486 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently we demonstrated the applicability of a holographic method for shaping complex wavefronts to spatial light modulator (SLM) systems. Here we examine the potential of this approach for optical micromanipulation. Since the method allows one to shape both amplitude and phase of a trapping light field independently and thus provides full control over scattering and gradient forces, it extends the possibilities of commonly used holographic tweezers systems. We utilize two cascaded phase-diffractive elements which can actually be display side-by-side on a single programmable phase modulator. Theoretically the obtainable light efficiency is close to 100%, in our case the major practical limitation arises from absorption in the SLM. We present data which demonstrate the ability to create user-defined “light pathways” for microparticles driven by transverse radiation pressure.

© 2008 Optical Society of America

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 31, 2008
Revised Manuscript: February 24, 2008
Manuscript Accepted: February 24, 2008
Published: March 18, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Alexander Jesacher, Christian Maurer, Andreas Schwaighofer, Stefan Bernet, and Monika Ritsch-Marte, "Full phase and amplitude control of holographic optical tweezers with high efficiency," Opt. Express 16, 4479-4486 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of s single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  3. A. Constable, Jinha Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  4. A. Chowdhury, B. J. Ackerson, N. A. Clark, "Laser-Induced Freezing," Phys. Rev. Lett. 55, 833-836 (1985). [CrossRef] [PubMed]
  5. A. Casaburi, G. Pesce, P. Zemanek, and A. Sasso, "Two- and three-beam interferometric optical tweezers," Opt. Commun. 251, 393-404 (2005). [CrossRef]
  6. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  7. R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002). [PubMed]
  8. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  9. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12, 2243-2250 (2004). [CrossRef] [PubMed]
  10. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  11. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  12. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. K¨as, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001). [CrossRef] [PubMed]
  13. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  14. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  15. P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001). [CrossRef]
  16. J. P. Kirk and A. L. Jones, "Phase-Only Complex-Valued Spatial Filter," J. Opt. Soc. Am. 61, 1023-1028 (1971). [CrossRef]
  17. Y. Roichman and D. G. Grier, "Projecting Extended Optical Traps with Shape-Phase Holography," Opt. Lett. 31, 1675-1677 (2006). [CrossRef] [PubMed]
  18. M. A. A. Neil, T. Wilson, and R. Ju¡skaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000). [CrossRef] [PubMed]
  19. R. Tudela, E. Mart’ýn-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A 5, 189-194 (2003). [CrossRef]
  20. M.-L. Hsieh, M.-L. Chen, and C.-J. Cheng, "Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique," Opt. Eng. 46, 07501 (2007). [CrossRef]
  21. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  22. J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003). [CrossRef] [PubMed]
  23. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008). [CrossRef] [PubMed]
  24. H. Bartelt, "Computer-generated holographic component with optimum light efficiency," Appl. Opt. 23, 1499-1502 (1984). [CrossRef] [PubMed]
  25. H. O. Bartelt, "Applications of the tandem component: an element with optimum light efficiency," Appl. Opt. 24, 3811-3816 (1985). [CrossRef] [PubMed]
  26. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, "Near-perfect hologram reconstruction with a spatial light modulator," Opt. Express 16, 2597-2603 (2008). [CrossRef] [PubMed]
  27. A. Jesacher, S. F¨urhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Reverse orbiting of microparticles in optical vortices," Opt. Lett. 31, 2824-2827 (2006). [CrossRef] [PubMed]
  28. G. O. Reynolds, J. B. Develis, and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE, 1989). [CrossRef]
  29. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).
  30. R. W. Gerchberg, and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  31. A. Jesacher, S. Furhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Holographic optical tweezers for object manipulations at an air-liquid surface," Opt. Express 14, 6342-6352 (2006). [CrossRef] [PubMed]
  32. C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical Measurement of Surface Tension in a Miniaturized Air-Liquid Interface and its Application in Lung Physiology," Biophys. J.  89, 1353-1361 (2005). [CrossRef] [PubMed]
  33. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, "Synthesis of digital holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (3049 KB)     
» Media 2: AVI (3134 KB)     
» Media 3: AVI (2846 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited