OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4588–4596

Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating

Ravi D. R. Bhat, Nicolae C. Panoiu, Steven R. J. Brueck, and Richard M. Osgood, Jr.  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4588-4596 (2008)
http://dx.doi.org/10.1364/OE.16.004588


View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use finite-difference time-domain (FDTD) simulations to demonstrate enhanced infrared absorption in a photodetector covered with a microstructured metal film consisting of a metal-plasmon grating collector/concentrator and sub-wavelength detector well; for circular gratings we use radial FDTD, and for linear gratings we use two-dimensional FDTD. We identify a figure of merit to quantify the improvement in signal-to-noise ratio of such a detector scheme.We optimize grating parameters for a circular grating surrounding a simple hole, showing that the signal-to-noise ratio can be improved by a factor of as much as 5.2, whereas the signal-to-noise improvement for comparable linear gratings is at most 1.7. In the case of the circular grating, this result is achieved with more than 400 times as much light absorbed in the hole as with a metal film but no grating.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(230.5160) Optical devices : Photodetectors
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optical Devices

History
Original Manuscript: January 8, 2008
Revised Manuscript: February 19, 2008
Manuscript Accepted: February 20, 2008
Published: March 19, 2008

Citation
Ravi D. R. Bhat, Nicolae C. Panoiu, Steven R. J. Brueck, and Richard M. Osgood, "Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating," Opt. Express 16, 4588-4596 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  2. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002). [CrossRef]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  4. A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003). [CrossRef] [PubMed]
  5. S. Shinada, J. Hashizume, F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003). [CrossRef]
  6. F. I. Baida, D. Van Labeke, B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42, 6811–6815 (2003). [CrossRef] [PubMed]
  7. A. Degiron, T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004). [CrossRef] [PubMed]
  8. H. J. Lezec, T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004). [CrossRef] [PubMed]
  9. T. Ishi, J. Fujikata, K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys. 44, L170–L172 (2005). [CrossRef]
  10. E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005). [CrossRef] [PubMed]
  11. E. Popov, M. Nevière, A.-L. Fehrembach, N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt. 44, 6898–6904 (2005). [CrossRef] [PubMed]
  12. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett. 31, 2341–2343 (2006). [CrossRef] [PubMed]
  13. K. L. Shuford, M. A. Ratner, S. K. Gray, G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B: Lasers Opt. 84, 11–18 (2006). [CrossRef]
  14. J. Olkkonen, K. Kataja, D. G. Howe, “Light transmission through a high index dielectric hole in a metal film surrounded by surface corrugations,” Opt. Express 14, 11506–11511 (2006). [CrossRef] [PubMed]
  15. C.-K. Chang, D.-Z. Lin, C.-S. Yeh, C.-K. Lee, Y.-C. Chang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90, 061113 (2007). [CrossRef]
  16. H. Cao, A. Agrawa, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005). [CrossRef] [PubMed]
  17. A. Agrawal, H. Cao, A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005). [CrossRef] [PubMed]
  18. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84, 2040–2042 (2004). [CrossRef]
  19. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A: Pure Appl. Opt. 7, S152–S158 (2005). [CrossRef]
  20. H. Caglayan, I. Bulu, E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13, 1666–1671 (2005). [CrossRef] [PubMed]
  21. H. Caglayan, I. Bulu, E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B 23, 419–422 (2006). [CrossRef]
  22. T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005). [CrossRef]
  23. Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  24. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  25. N. C. Panoiu, R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825 (2007). [CrossRef] [PubMed]
  26. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997), chap. 11, 5th ed.
  27. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.
  28. RSoft Design Group, FullWAVE™ 6.0.2, http://www.rsoftdesign.com/.
  29. J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef] [PubMed]
  30. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A 4, 1970–1983 (1987). [CrossRef]
  31. F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
  32. S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. B 8, 770–779 (1991). [CrossRef]
  33. O. T. A. Janssen, H. P. Urbach, G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007). [CrossRef] [PubMed]
  34. D. A. Thomas, H. P. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004). [CrossRef]
  35. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  36. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003). [CrossRef] [PubMed]
  37. L. Tang, D. A. B. Miller, A. K. Okya, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited