OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4605–4614

Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide

Soon-Hong Kwon, Thomas Sünner, Martin Kamp, and Alfred Forchel  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4605-4614 (2008)
http://dx.doi.org/10.1364/OE.16.004605


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an ultrahigh quality factor (Q) photonic crystal slab cavity created by the local modulation of the air hole radius in the waveguide. In the cavity, photons are confined between two mirror regions with larger air holes and the lifetime of photons is greatly enhanced by introducing tapered regions with linearly increasing air hole radii. Q and mode volume are investigated for the cavities with various lengths and air hole size offsets of the tapered region with linearly increasing air hole radii by three-dimensional finite-difference time-domain method. The behaviors are analyzed by the mode patterns in real space and wavevector space. We obtain a numerical Q up to 8.8×107 for a mode volume of 1.6 (λ/n)3. Concerning the waveguide coupling, the cavity shows 80% coupling efficiency while keeping Q higher than 106.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 6, 2008
Revised Manuscript: February 27, 2008
Manuscript Accepted: February 27, 2008
Published: March 19, 2008

Citation
Soon-Hong Kwon, Thomas Sünner, Martin Kamp, and Alfred Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric supuerlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-2821 (1999). [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  6. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]
  7. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photon. 1, 449-458 (2007). [CrossRef]
  8. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007). [CrossRef] [PubMed]
  9. R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs, " Opt. Lett. 31, 1299-1301 (2006). [CrossRef]
  10. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 1-3 (2006). [CrossRef]
  11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007). [CrossRef]
  12. S. T. Hanic, M. J. Steel, C. M. Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef]
  13. S. T. Hanic, C. M. Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006). [CrossRef]
  14. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. T. Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. L. Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 1-3 (2007). [CrossRef]
  15. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004). [CrossRef] [PubMed]
  16. S. H. Kim, S. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonantors," Phys. Rev. B 73, 1-13 (2006). [CrossRef]
  17. H. Y. Ryu, M. Notomi, and Y. H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  18. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited