OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4719–4730

Anomalies in the disappearance of the extraordinary electromagnetic transmission in subwavelength hole arrays

Jean-Baptiste Masson, Alexander Podzorov, and Guilhem Gallot  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4719-4730 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied the evolution of the Extraordinary Electromagnetic Transmission (EET) through subwavelength hole arrays versus hole size. Here, we show that for large holes EET vanishes and is replaced by another unusual transmission. A specific hole size is found where all the characteristics of the EET vanish and where most usual models fail to describe the transmission except full 3D simulations. The transition between these two domains is characterized by the discontinuity of parameters describing the transmission, in particular the resonance frequency. This transition exhibits a first order phase transition like behavior.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.3090) Physical optics : Infrared, far

ToC Category:
Diffraction and Gratings

Original Manuscript: November 16, 2007
Revised Manuscript: December 12, 2007
Manuscript Accepted: December 13, 2007
Published: March 21, 2008

Jean-Baptiste Masson, Alexander Podzorov, and Guilhem Gallot, "Anomalies in the disappearance of the extraordinary electromagnetic transmission in subwavelength hole arrays," Opt. Express 16, 4719-4730 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998). [CrossRef]
  2. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, "Enhanced nonlinear optical conversion from a periodically nanostructured metal film, " Opt. Lett. 28, 423-425 (2003). [CrossRef] [PubMed]
  3. H. A. Bethe, "Theory of diffraction by small apertures," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  4. C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35-100 (1954). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  6. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999). [CrossRef]
  7. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001). [CrossRef] [PubMed]
  8. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002). [CrossRef]
  9. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  10. A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002). [CrossRef]
  11. E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002). [CrossRef] [PubMed]
  12. E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003). [CrossRef]
  13. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  14. Y.-H. Ye and J.-Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-2980 (2004). [CrossRef]
  15. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).
  16. D. Qu and D. Grischkowsky, "Observation of a new type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93, 196804 (2004). [CrossRef] [PubMed]
  17. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2745 (2004). [CrossRef]
  18. J. Gomez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-847. [CrossRef]
  19. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1004. [CrossRef] [PubMed]
  20. J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401(R) (2006).
  21. D. Qu, D. Grischkowsky and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004). [CrossRef] [PubMed]
  22. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999). [CrossRef]
  23. A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005). [CrossRef]
  24. F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006). [CrossRef]
  25. T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007). [CrossRef] [PubMed]
  26. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
  27. C. C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Technol. 21, 1-6 (1973). [CrossRef]
  28. J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998). [CrossRef]
  29. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1875 (1961). [CrossRef]
  30. C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003). [CrossRef]
  31. J.-B. Masson, A. Podzorov, and G. Gallot, "Generalized parabolic Fano model of extraordinary electromagnetic transmission in subwavelength hole arrays," submitted.
  32. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  33. L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  34. C. M. Soukoulis, "Photonic Crystals and Light Localization in the 21st Century," NATO Science Series Vol. 563 (Kluwer, Dordrecht, 2001).
  35. J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488. [CrossRef] [PubMed]
  36. E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003). [CrossRef]
  37. E. Ozbay, "Plasmonic : merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  38. Comsol Multiphysics, Comsol Inc., Burlington, MA.
  39. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R.W. Alexander, and C. A. Ward, "Optical-properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  40. Magnetic Properties of Metals, Landolt-Bornstein, Group III: condensed matter, Springer-Verlag, Berlin (1986).
  41. J. D. Jackson, Classical Electrodynamics, 3rd edition, John Wiley & Sons (1999).
  42. M. Born, E. Wolf, Principle of Optics, 7th edition, Cambridge University Press (2001).
  43. F. Schawbl, Statistical Mechanics, Springer (2000).
  44. H. E. Stanley, Introduction to phase transitions and critical phenomena, Oxford science publications (1971).
  45. J.-B. Masson and G. Gallot, "Experimental evidence of percolation phase transition in surface plasmons generation," ArXiv:cond-mat/0611280v1 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited