OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4774–4784

Focusing properties of Gaussian beams by a slab of Kerr-type left-handed metamaterial

Yonghua Hu, Shuangchun Wen, Hui Zhuo, Kaiming You, and Dianyuan Fan  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4774-4784 (2008)
http://dx.doi.org/10.1364/OE.16.004774


View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Kerr-type left-handed metamaterial (LHM) slab is proved to have an effect of focusing paraxial Gaussian beams and changing their waist radius, as conventional lens can do. The expressions for the focusing distance and the spot radius at the focal point are derived by the variational approach. We show that the incident Gaussian beams can be compressed or expanded by a single Kerr LHM slab, according to the sign of the Kerr nonlinearity and the divergence of the incident beam. Especially, it is demonstrated the focusing properties are significantly tuned by the slab thickness, the beam power and the divergence of the incident Gaussian beam.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 3, 2008
Revised Manuscript: March 14, 2008
Manuscript Accepted: March 18, 2008
Published: March 24, 2008

Citation
Yonghua Hu, Shuangchun Wen, Hui Zhuo, Kaiming You, and Dianyuan Fan, "Focusing properties of Gaussian beams by a slab of Kerr-type left-handed metamaterial," Opt. Express 16, 4774-4784 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-44 (2004). [CrossRef]
  3. N. Garcia and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens" Phys. Rev. Lett. 88, 207403 (2002). [CrossRef] [PubMed]
  4. X. S. Rao and C. K. Ong, "Subwavelength imaging by a left-handed material superlens," Phys. Rev. E 68, 067601 (2003). [CrossRef]
  5. D. Maystre and S. Enoch, "Perfect lenses made with left-handed materials: Alice’s mirror?," J. Opt. Soc. Am. A 21, 122-131 (2004). [CrossRef]
  6. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006). [CrossRef]
  7. J. J. Chen, T. M. Grzegorczyk, B. Wu, and J. A. Kong, "Imaging properties of finite-size left-handed material slabs," Phys. Rev. E. 74, 046615 (2006). [CrossRef]
  8. L. Zhao and T. J. Cui, "Super-resolution imaging of dielectric objects using a slab of left-handed material," Appl. Phys. Lett. 89, 141904 (2006). [CrossRef]
  9. M. W. Feise and Y. S. Kivshar, "Sub-wavelength imaging with a left-handed material flat lens," Phys. Lett. A 334, 326 (2005). [CrossRef]
  10. J. J. Chen, T. M. Grzegorczyk, B.-I. Wu, and J. A. Kong, "Limitation of FDTD in simulation of a perfect lens imaging system," Opt. Express 13, 108409 (2005). [CrossRef] [PubMed]
  11. A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401(2004). [CrossRef] [PubMed]
  12. V. N. Kissel and A. N. Lagarkov, "Superresolution in left-handed composite structures: From homogenization to a detailed electrodynamic description," Phys. Rev. B 72, 085111 (2005). [CrossRef]
  13. H. L. Luo, W. Hu, Z. Z. Ren, W. X. Shu, and F. Li, "Focusing and phase compensation of paraxial beams by a left-handed material slab," Opt. Commun. 266, 327-331 (2006). [CrossRef]
  14. R. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662-681 (2003). [CrossRef] [PubMed]
  15. J. Lu and S. He, "Numerical study of a Gaussian beam propagating in media with negative permittivity and permeability by using a bidirectional beam propagation method," Microwave Opt. Technol. Lett. 37, 292-296 (2003). [CrossRef]
  16. J. A. Kong, B.-I. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002). [CrossRef]
  17. A. Husakou and J. Herrmann, "Superfocusing of light below the diffraction limit by photonic crystals with negative refraction," Opt. Express 12, 6491-6497 (2004).
  18. P. P. Banerjee, and G. Nehmetallah, "Linear and nonlinear propagation in negative index materials," J. Opt. Soc. Am. B. 23, 2348-2355 (2006). [CrossRef]
  19. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007). [CrossRef]
  20. V. Yannopapas and N. V. Vitanov, "Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength," Phys. Rev. B 74, 193304 (2006). [CrossRef]
  21. V. Yannopapas, "Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices," Phys. Stat. Sol.(RRL) 1, 208-210 (2007).
  22. V. Yannopapas, "Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies," Appl. Phys. A 87, 259-264 (2007). [CrossRef]
  23. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear Properties of Left-Handed Metamaterials," Phys. Rev. Lett. 91, 037401 (2003). [CrossRef] [PubMed]
  24. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004). [CrossRef]
  25. P. P. Banerjee and G. Nehmetallah, "Spatial and spatiotemporal solitary waves and their stabilization in nonlinear negative index materials," J. Opt. Soc. Am. B 24, A69-A76 (2007). [CrossRef]
  26. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials" Phys. Rev. B 69, 165112 (2004). [CrossRef]
  27. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, "Generalized Nonlinear Schrödinger Equation for Dispersive Susceptibility and Permeability: Application to Negative Index Materials," Phys. Rev. Lett. 95, 013902 (2005). [CrossRef] [PubMed]
  28. I. V. Shadrivov and Y. S. Kivshar, "Spatial solitons in nonlinear left-handed metamaterials," J. Opt. A: Pure Appl. Opt. 7, S86-S72 (2005). [CrossRef]
  29. I. Kourakis and P. K. Shukla, "Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials," Phys. Rev. E 72, 016626 (2005). [CrossRef]
  30. S. C. Wen, Y. W. Wang, W. H. Su, Y. J. Xiang, X. Q. Fu, and D. Y. Fan, "Modulation instability in nonlinear negative-index material," Phys. Rev. E 73, 036617 (2006). [CrossRef]
  31. S. Wen, Y. Xiang, W. Su, Y. Hu, X. Fu, and D. Fan, "Role of the anomalous self-steepening effect in modulation instability in negative-index material," Opt. Express 14, 1568-1575 (2006). [CrossRef] [PubMed]
  32. S. Wen, Y. Xiang, X. Dai, Z. Tang, W. Su, and D. Fan, "Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials," Phys. Rev. A 75, 033815 (2007). [CrossRef]
  33. D. Anderson, M. Bonneal, and M. Lisak, "Variational approach to nonlinear self-focusing of Gaussian laser beams," Phys. Fluids 22, 105-109 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited