OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4848–4857

Single quantum dot controlled lasing effects in high-Q micropillar cavities

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V.D. Kulakovskii, and A. Forchel  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4848-4857 (2008)
http://dx.doi.org/10.1364/OE.16.004848


View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lasing effects based on individual quantum dots have been investigated in optically pumped high-Q micropillar cavities. We demonstrate a lowering of the threshold pump power from a off-resonance value of 37 µW to 18 µW when an individual quantum dot exciton is on-resonance with the cavity mode. Photon correlation studies below and above the laser threshold confirm the single dot influence. At resonance we observe antibunching with g(2) (0)=0.36 at low excitation, which increases to 1 at about 1.5 times the threshold. In the off-resonant case, g(2) (0) is about 1 below and above threshold.

© 2008 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(270.0270) Quantum optics : Quantum optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 3, 2007
Revised Manuscript: February 1, 2008
Manuscript Accepted: March 18, 2008
Published: March 25, 2008

Citation
S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects in high-Q micropillar cavities," Opt. Express 16, 4848-4857 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  2. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006). [CrossRef] [PubMed]
  3. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  4. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001). [CrossRef] [PubMed]
  5. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004). [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004). [CrossRef] [PubMed]
  7. P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000). [CrossRef]
  8. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006). [CrossRef] [PubMed]
  9. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006). [CrossRef]
  10. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007). [CrossRef] [PubMed]
  11. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994). [CrossRef]
  12. M. Sugawara, J. C. Bean, "Self-assembled InGaAs/GaAs quantum dots: semiconductors and semimetals," 1st edition (Academic Press, 1999).
  13. J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002). [CrossRef]
  14. G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994). [CrossRef] [PubMed]
  15. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007). [CrossRef] [PubMed]
  16. A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005). [CrossRef]
  17. W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).
  18. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).
  19. L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999). [CrossRef]
  20. S. Rudin, and T. L. Reinecke, „Oscillator model for vacuum Rabi splitting in microcavities," Phys. Rev. B 59, 10227-10232 (1999). [CrossRef]
  21. L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006). [CrossRef]
  22. J. M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," in Single Quantum Dots, P. Michler, ed. (Springer 2003), pp. 269-315
  23. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996). [CrossRef]
  24. S. Marcinkevicius and R. Leon, "Rapid Carrier capture and escape in InxGa1-xAs/GaAs quantum dots: Effects of intermixing, " Phys. Rev. B 59, 4630-4633 (1999). [CrossRef]
  25. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002). [CrossRef] [PubMed]
  26. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007). [CrossRef] [PubMed]
  27. P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited