OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4888–4894

A wide bandgap plasmonic Bragg reflector

Jian-Qiang Liu, Ling-Ling Wang, Meng-Dong He, Wei-Qing Huang, Dianyuan Wang, B. S. Zou, and Shuangchun Wen  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4888-4894 (2008)
http://dx.doi.org/10.1364/OE.16.004888


View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface plasmon polaritons (SPPs) Bragg reflector with more excellent optical properties are investigated numerically. By introducing a finite array of periodic grooves on the two surfaces of metal-insulator-metal (MIM) waveguide, we fulfill the periodical changes of effective refractive index, which leads to the photonic band gap (PBG). And it has been further widened by inserting a dielectric material with higher refractive index in the waveguide with narrow slit width. Finite difference time domain (FDTD) simulation confirms the widened bandgap. In addition, a SPP nanocavity is introduced by breaking the periodicity of our proposed structure.

© 2008 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 15, 2008
Revised Manuscript: March 19, 2008
Manuscript Accepted: March 19, 2008
Published: March 26, 2008

Citation
Jian -Qiang Liu, Ling-Ling Wang, Meng-Dong He, Wei-Qing Huang, Dianyuan Wang, B. S. Zou, and Shuangchun Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express 16, 4888-4894 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003). [CrossRef] [PubMed]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light froma a subwavelength aperture," Science 297, 820 (2002). [CrossRef] [PubMed]
  3. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006). [CrossRef]
  4. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  5. H. Dilbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408 (2004). [CrossRef]
  6. A. Hosseini, H. Nejati, and Y. Massoud, "Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides," Opt. Express 15, 15280 (2007); "Triangular lattice photonic band gaps in subwavelength metal-insulator-metal structures," Appl. Phys. Lett. 92, 013116 (2008). [CrossRef] [PubMed]
  7. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670 (1996). [CrossRef] [PubMed]
  8. H. Dilbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," App. Phys. Lett. 81, 1762 (2002). [CrossRef]
  9. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvanm, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001). [CrossRef] [PubMed]
  10. J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, "Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides," App. Phys. Lett. 89, 211109 (2006). [CrossRef]
  11. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45 (2008). [CrossRef] [PubMed]
  12. B. Wang and G. P. Wang, "Plasmon Bragg reflector and nanocavities on flat metallic surfaces," App. Phys. Lett. 87, 013107 (2005). [CrossRef]
  13. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  14. L. Zhou, X. -q. Yu, and Y. -y. Zhu, " Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide," App. Phys. Lett. 89, 051901 (2006). [CrossRef]
  15. A. Houseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318 (2006). [CrossRef]
  16. A. Houseini, H. Nejati, and Y. Massoud,"Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475 (2008). [CrossRef]
  17. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants and Solids (C Academic, Orlando, Fla, 1985).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston. 2000).
  20. R. Muller, C. Ropers and C. Lienau, "Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate," Opt. Express 12, 5067 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited