OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4918–4929

3-D modulable PDMS-based microlens system

V.J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J.A. Plaza  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4918-4929 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3900 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design, simulation, fabrication and characterization of 3-D modulable micro-optical system based on poly-dimethilsiloxane (PDMS) are presented in this paper. This system consists on two uncoupled PDMS lenses with different diameter (2 and 10 µm). Under stretching conditions, the dimensions of the small lens are not modified, whereas the geometry of the bigger lens is shifted from spherical to elliptical. A combination of different technologies is used to fabricate this microsystem: silicon, polymer and soft-lithography microfabrication techniques. This combination allows obtaining structures with a simple and mass production technology. Experimental results confirm the predicted numerical simulations, showing that, when the structure is under stretching conditions, the first focus is virtually invariable whereas the second focus becomes a Sturm zone.

© 2008 Optical Society of America

OCIS Codes
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(160.5470) Materials : Polymers
(230.4000) Optical devices : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 16, 2007
Revised Manuscript: January 11, 2008
Manuscript Accepted: January 15, 2008
Published: March 26, 2008

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, "3-D modulable PDMS-based microlens system," Opt. Express 16, 4918-4929 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Glebov, L. D. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, "Two-dimensional microlens arrays in silica-onsilicon planar lightwave circuit technology," J. Microlithogr. Microfabr. Microsyst. 2, 309-318 (2003). [CrossRef]
  2. T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004). [CrossRef]
  3. S. Camou, H. Fujita, and T. Fujii, "PDMS 2D optical lens integrated with microfluidic channels: principle and characterization," Lab on a Chip 3, 40-45 (2003). [CrossRef]
  4. A. Tate, T. Suzuki, and H. Tsuda, "Multistage polymeric lens structures integrated into silica waveguides," Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications and Review Papers 45, 6288-6293 (2006). [CrossRef]
  5. C. David, "Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements," Microelectron. Eng. 53,677-680 (2000). [CrossRef]
  6. M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, "Surface-mountable silicon microlens for low-cost laser modules," IEEE Photon. Technol. Lett. 15, 945-947 (2003). [CrossRef]
  7. T. Bourouina, T. Masuzawa, and H. Fujita, "The MEMSNAS process: Microloading effect for micromachining 3-D structures of nearly all shapes," J. Microelectromech. Syst. 13, 190-199 (2004). [CrossRef]
  8. W. X. Yu and X. C. Yuan, "UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask," Opt. Express 11, 2253-2258 (2003). [CrossRef] [PubMed]
  9. A. Llobera, A. R. Wilke, D. W. Johnson, and S. Buttgenbach, "Polymer microlenses with modified micromolding in capillaries (MIMIC) technology," IEEE Photon. Technol. Lett. 17, 2628-2630 (2005). [CrossRef]
  10. F. T. O'Neill and J. T. Sheridan, "Photoresist reflow method of microlens production Part I: Background and experiments," Optik 113, 391-404 (2002). [CrossRef]
  11. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 27, 1281-1284 (1988). [CrossRef] [PubMed]
  12. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," J. Sol-Gel Sci. Technol. 13, 177-182 (1998). [CrossRef]
  13. X. J. Shen, L. W. Pan, and L. W. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators A 97, 428-433 (2002). [CrossRef]
  14. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003). [CrossRef]
  15. P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998). [CrossRef]
  16. J. B. Orhan, V. K. Parashar, A. Sayah, and M. A. M. Gijs, "Fabrication and characterization of three-dimensional microlens arrays in sol-gel glass," J. Microelectromech. Syst. 15, 1159-1164 (2006). [CrossRef]
  17. M. Feldmann, S. Bütefish, and S. Büttgenbach, "A novel electrically controlled flexible liquid microlens, in DTIP of MEMS & MOEMS," IEEE: Cannes-Mandelieu, 2003.
  18. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003). [CrossRef] [PubMed]
  19. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 2004. [CrossRef] [PubMed]
  20. Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998). [CrossRef]
  21. K. Hosokawa, K. Hanada, and R. Maeda, "A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,"J. Micromech. and Microeng. 12, 1-6 (2002). [CrossRef]
  22. R. Panergo, C. S. Huang, C. S. Liu, P. G. Reinhall, and W. C. Wang, "Resonant polymeric waveguide cantilever integrated for optical scanning," J. Lightwave Technol. 25, 850-860 (2007). [CrossRef]
  23. A. Llobera, R. Wilke, and S. Buttgenbach, "Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift," Lab Chip. 4, 24-27 (2004). [CrossRef] [PubMed]
  24. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. and Microeng. 7, 145-147 (1997). [CrossRef]
  25. M. Katz, Introduction to Geometrical Optics (World Scintific 1994).
  26. D. F. G. Gallagher and T. P. Felici, "Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons.," in Proc. SPIE 4987, 69-82 (2003). [CrossRef]
  27. G. Sztefka and H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993). [CrossRef]
  28. G. Villanueva, J. A. Plaza, A. Sanchez, K. Zinoviev, F. Perez-Murano, and J. Bausells, "DRIE based novel technique for AFM probes fabrication," Microelectron. Eng. 84, 1132-1135 (2007). [CrossRef]
  29. F. Laermer and A. Schilp, "Anisotropic etching of silicon substrates - using a polymerisation process in between etching stages to protect lateral edges of the etched shape," 1992.
  30. F. Laermer, A. Schilp, K. Funk, and M. Offenberg, in Proceedings of Twelfth IEEE International Conference MEMS 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited