OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4930–4944

Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation

Rajesh N. Raman, Christopher D. Pivetti, Dennis L. Matthews, Christoph Troppmann, and Stavros G. Demos  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4930-4944 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore a method to quantitatively assess the ability of in vivo autofluorescence as a means to quantify the progression of longer periods of renal warm ischemia and reperfusion in a rat model. The method employs in vivo monitoring of tissue autofluorescence arising mainly from NADH as a means to probe the organ’s function and response to reperfusion. Clinically relevant conditions are employed that include exposure of the kidney to ischemia on the order of tens of minutes to hours. The temporal profile during the reperfusion phase of the autofluorescence intensity averaged over an area as large as possible was modeled as the product of two independent exponential functions. Time constants were extracted from fits to the experimental data and their average values were found to increase with injury time.

© 2008 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 17, 2007
Revised Manuscript: January 31, 2008
Manuscript Accepted: March 20, 2008
Published: March 26, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Rajesh N. Raman, Christopher D. Pivetti, Dennis L. Matthews, Christoph Troppmann, and Stavros G. Demos, "Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation," Opt. Express 16, 4930-4944 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002). [CrossRef] [PubMed]
  2. A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003). [CrossRef] [PubMed]
  3. T. Sommer and J. F. Larsen, "Detection of intestinal ischemia using a microdialysis technique in an animal model," World J. Surg. 27, 416-420 (2003). [CrossRef] [PubMed]
  4. D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981). [PubMed]
  5. S. G. Simonson and C. A. Piantadosi, "Near-infrared spectroscopy: Clinical applications," Crit. Care Clin. 12,1019 (1996). [CrossRef] [PubMed]
  6. B. Chance, "Spectrophotometry of intracellular respiratory pigments," Science 120, 767-775 (1954). [CrossRef] [PubMed]
  7. S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).
  8. A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982). [CrossRef] [PubMed]
  9. G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984). [PubMed]
  10. A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003). [CrossRef]
  11. J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005). [CrossRef]
  12. B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).
  13. H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003). [CrossRef]
  14. F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977). [CrossRef] [PubMed]
  15. A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003). [CrossRef] [PubMed]
  16. T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991). [CrossRef] [PubMed]
  17. J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999). [CrossRef] [PubMed]
  18. A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002). [CrossRef] [PubMed]
  19. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962). [CrossRef] [PubMed]
  20. R. R. Alfano and Y. Yang, "Stokes shift emission of human tissue and key biomolecules," IEEE J. Quantum Electron. 9, 148-153 (2003). [CrossRef]
  21. A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005). [CrossRef] [PubMed]
  22. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, WA, 2000).
  23. M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995). [CrossRef] [PubMed]
  24. P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983). [CrossRef] [PubMed]
  25. K. Togashi, "Rapid restoration of injured kidney after immediate removal of opposite normal kidney," Acta Pathol. Jpn. 32, 749-757 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (147 KB)     
» Media 2: AVI (133 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited