OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4981–4990

Compact waveguide splitter networks

Yusheng Qian, Jiguo Song, Seunghyun Kim, Weisheng Hu, and Gregory P. Nordin  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4981-4990 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate compact waveguide splitter networks in silicon-on-insulator (SOI) rib waveguides using trench-based splitters (TBSs) and bends (TBBs). Rather than a 90° geometry, we use 105° TBSs to facilitate reliable fabrication of high aspect ratio trenches suitable for 50/50 splitting when filled with SU8. Three dimensional (3D) finite difference time domain (FDTD) simulation is used for splitter and bend design. Measured TBB and TBS optical efficiencies are 84% and 68%, respectively. Compact 105° 1×4, 1×8, and 1×32 trench-based splitter networks (TBSNs) are demonstrated. The measured total optical loss of the 1×32 TBSN is 9.15 dB. Its size is only 700 µm×1600 µm for an output waveguide spacing of 50 µm.

© 2008 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(230.1360) Optical devices : Beam splitters
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(260.6970) Physical optics : Total internal reflection

ToC Category:
Integrated Optics

Original Manuscript: February 11, 2008
Revised Manuscript: March 23, 2008
Manuscript Accepted: March 25, 2008
Published: March 27, 2008

Yusheng Qian, Jiguo Song, Seunghyun Kim, Weisheng Hu, and Gregory P. Nordin, "Compact waveguide splitter networks," Opt. Express 16, 4981-4990 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Gamet and G. Pandraud, "Field-matching Y-branch for low loss power splitter," Opt. Commun. 248, 423-429 (2005). [CrossRef]
  2. Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, "Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter," Electron. Lett. 43, 217-219 (2007). [CrossRef]
  3. K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Peterson, A. Manz, and J. P. Kutter, "A microfluidic device with an integrated waveguide beam splitter for velocity measurements of flowing particles by Fourier transformation," Anal. Chem. 75, 4931-4936 (2003). [CrossRef] [PubMed]
  4. A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005). [CrossRef]
  5. Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, and N. Takato, "High reliability optical splitters composed of silica-based planar lightwave circuits," J. Lightwave Technol. 13, 1728-1735 (1995). [CrossRef]
  6. Y. Hida and Y. Inoue, F. Hanawa, T. Fukumitsu, Y. Enomoto, and N. Takato, "Silica-based 1×32 splitter integrated with 32 WDM couplersusing multilayered dielectric filters for fiber line testing at 1.65μm," IEEE Photon. Technol. Lett. 11, 96-98 (1999). [CrossRef]
  7. M. Bouda, J. W. M. van Uffelen, C. van Dam, and B. H. Verbeek, "Compact 1×16 power splitter based on symmetrical 1×2MMI splitters," Electron. Lett. 21, 1756-1758 (1994). [CrossRef]
  8. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in Silicon-on-Insulator Optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998). [CrossRef]
  9. J. H. Kim, B. W. Dudley, and P. J. Moyer, "Experimental demonstration of replicated multimode interferometer power splitter in Zr-doped sol-gel," J. Lightwave Technol. 24, 612-616 (2006). [CrossRef]
  10. Y. Qian, J. Song, S. Kim, and G. P. Nordin, "Compact 90° trench-based splitter for silicon-on-insulator rib waveguides," Opt. Express 15, 16712-16718 (2007). [CrossRef] [PubMed]
  11. N. Rahmanian, S. Kim, Y. Lin, and G. P. Nordin, "Air-trench splitters for ultra-compact ring resonators in low refractive index contrast waveguides," Opt. Express 16, 456-465 (2008). [CrossRef] [PubMed]
  12. Y. Qian, S. Kim, J. Song, and G. P. Nordin, "Compact and low loss silicon-on-insulator rib waveguide 90° bend," Opt. Express 14, 6020-6028 (2006). [CrossRef] [PubMed]
  13. G. P. Nordin, J. W. Noh, and S. Kim, "In-plane photonic transduction for microcantilever sensor arrays," SPIE 6447, 64470J (2007). [CrossRef]
  14. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, Ch. Gerber, and J. K. Gimzewski, "Translating biomolecular recognition into nanomechanics," Science 288,316-318 (2000). [CrossRef] [PubMed]
  15. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, "Bioassay of prostate-specific antigen (PSA) using microcantilevers," Nat. Biotechnol. 19,856-860 (2001). [CrossRef] [PubMed]
  16. F. Huber, M. Hegner, C. Gerber, H. J. Guntherodt, and H. P. Lang, "Label free analysis of transcription factors using microcantilever arrays," Biosens. Bioelectron 21,1599-1605 (2006). [CrossRef]
  17. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass., 1995).
  18. J. Cai, G. P. Nordin, S. Kim, and J. Jiang, "Three-dimensional analysis of a hybrid photonic crystal-conventional waveguide 90o bend," Appl. Opt. 43, 4244-4249 (2004). [CrossRef] [PubMed]
  19. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited