OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 5013–5021

Local and anisotropic excitation of surface plasmon polaritons by semiconductor nanowires

T.M. Rümke, J.A. Sánchez-Gil, O.L. Muskens, M.T. Borgström, E.P.A.M. Bakkers, and J. Gómez Rivas  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 5013-5021 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (604 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel functionality of semiconductor nanowires as local sources for surface plasmon polaritons (SPPs). Photoexcited semiconductor nanowires decay non-radiatively exciting SPPs when they are on top of a metallic surface. We have investigated the anisotropic excitation of SPPs by nanowires by placing individual InP nanowires inside gold bullseye gratings. The gratings serve to couple SPPs to free space radiation that is detected with a scanning confocal microscope. The circular geometry of the grating allows to conclude that SPPs are preferentially generated in the direction along the nanowire axis.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3800) Physical optics : Luminescence

ToC Category:
Optics at Surfaces

Original Manuscript: December 13, 2007
Revised Manuscript: March 19, 2008
Manuscript Accepted: March 19, 2008
Published: March 27, 2008

T. M. Rümke, J. A. Sánchez-Gil, O. L. Muskens, M. T. Borgström, E. P. Bakkers, and J. Gómez Rivas, "Local and anisotropic excitation of surface plasmon polaritons by semiconductor nanowires," Opt. Express 16, 5013-5021 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Haraguchi, T. Katsuyama, K. Hiruma, and K. Ogawa, "GaAs p-n junction formed in quantum wire crystals," Appl. Phys. Lett. 60, 745-747 (1992). [CrossRef]
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001). [CrossRef] [PubMed]
  3. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature 421, 241-245 (2003). [CrossRef] [PubMed]
  4. E. D. Minot, F. Kelkensberg, M. van Kouwen, J. A. van Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgström, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano Lett. 7, 367-371 (2007). [CrossRef] [PubMed]
  5. M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano Lett. 5, 1439-1443 (2005). [CrossRef] [PubMed]
  6. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001). [CrossRef] [PubMed]
  7. O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). [CrossRef]
  8. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-889 (2007). [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 421, 824-830 (2003). [CrossRef]
  10. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  11. H. L. Offerhaus, B. van de Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, "Creating focused plasmons by noncollinear phasematching on functional gratings," Nano Lett. 5, 2144-2148 (2005). [CrossRef] [PubMed]
  12. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nature Phys. 3, 324-328 (2007). [CrossRef]
  13. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Berlin 1988).
  14. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  15. G. W. Ford and W. H. Weber, "Electromagnetic interaction of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  16. W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Emission of light from Ag metal gratings coated with dye monolayer assemblies," J. Chem. Phys. 75, 4795-4799 (1981). [CrossRef]
  17. R.W. Gruhlke, W. R. Holland, and D. G. Hall,"Surface-plasmon coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841 (1986). [CrossRef] [PubMed]
  18. O. L. Muskens, J. Treffers, M. Forcales, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Modification of InP nanowire photoluminescence by coupling to surface plasmons on a metal grating," Opt. Lett. 32, 2097-2099 (2007). [CrossRef] [PubMed]
  19. H. E. Ruda and S. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72,115308:1-11 (2005). [CrossRef]
  20. J. A. Sánchez-Gil, "Coupling, resonance transmission, and tunneling of surface plasmon polaritons through metallic gratings of finite length," Phys. Rev. B 53, 10317-10327 (1996). [CrossRef]
  21. J. A. Sánchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991). [CrossRef]
  22. M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolivar, "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," J. Appl. Phys. 101, 023707:1-6 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited