OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 5061–5074

Design and tolerance analysis of a low bending loss hole-assisted fiber using statistical design methodology

Jürgen Van Erps, Christof Debaes, Tomasz Nasilowski, Jan Watté, Jan Wojcik, and Hugo Thienpont  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 5061-5074 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design of a low bending loss hole-assisted fiber for a 180°-bend fiber socket application, including a tolerance analysis for manufacturability. To this aim, we make use of statistical design methodology, combined with a fully vectorial mode solver. Two resulting designs are presented and their performance in terms of bending loss, coupling loss to Corning SMF-28 standard telecom fiber, and cut-off wavelength is calculated.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 18, 2008
Revised Manuscript: March 22, 2008
Manuscript Accepted: March 24, 2008
Published: March 28, 2008

Jurgen Van Erps, Christof Debaes, Tomasz Nasilowski, Jan Watté, Jan Wojcik, and Hugo Thienpont, "Design and tolerance analysis of a low bending loss hole-assisted fiber using statistical design methodology," Opt. Express 16, 5061-5074 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Payne and R. P. Davey, "The future of fibre access systems?," B T Technol. J. 20, 104-114 (2002). [CrossRef]
  2. K. Himeno, S. Matsuo, N. Guan, and A. Wada, "Low-bending-loss single-mode fibers for fiber-to-the-home," J. Lightwave Technol. 23, 3494-3499 (2005). [CrossRef]
  3. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, "Hole-assisted fiber for small bending and splice losses," IEEE Photon. Technol. Lett. 15, 1737-1739 (2003). [CrossRef]
  4. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005). [CrossRef] [PubMed]
  5. N. Guan,  et al., "Holey fibers for low bending loss," IEICE Trans. Electron. E89, 191-196 (2006). [CrossRef]
  6. Y. Bing, K. Oshono, Y. Kurosawa, T. Kumagai, and M. Tachikura, "Low-loss holey fiber," Hitachi Cable Review 24, 1-4 (2005).
  7. D. C. Montgomery, Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001).
  8. T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiment (Springer-Verlag, 2003).
  9. J. Van Erps,  et al., "Mass manufacturable 180◦-bend single mode fiber socket using hole-assisted low bending loss fiber," IEEE Photon. Technol. Lett. 20, 187-189 (2008). [CrossRef]
  10. LumericalMODE  Solutions™, http://www.lumerical.com/mode.php.
  11. H. R. D. Sunak and S. P. Bastien, "Refractive index and material dispersion of doped silica in the 0.6-1.8um wavelength region," IEEE Photon. Technol. Lett. 1, 142-145 (1989). [CrossRef]
  12. L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave Technol. 15, 671-679 (1997). [CrossRef]
  13. Corning HPFS® Standard Grade, http://www.corning.com/docs/specialtymaterials/pisheets/H0607 hpfs Standard ProductSheet.pdf.
  14. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational Phys. 114, 185-200 (1994). [CrossRef]
  15. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007). [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  17. J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 191257-1259 (2007). [CrossRef]
  18. R. L. Plackett and J. P. Burman, "The design of multifactorial experiments," Biometrika 33, 305-325 (1946). [CrossRef]
  19. G. E. P. Box and D.W. Behnken, "Some new three level designs for the study of quantitative variables," Technometrics 2, 455-476 (1960). [CrossRef]
  20. Minitab Statistical Software, http://www.minitab.com/products/minitab/.
  21. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for experimenters: An Introduction to Design, Data Analysis and Model Building (John Wiley & Sons, New York, 1978).
  22. I. M. Sobol, A Primer for the Monte Carlo Method (CRC Press, 1994).
  23. Crystal ball predictive modeling software, http://www.crystalball.com/cbpro/index.html.
  24. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers," Opt. Express 15, 13547-13556 (2007). [CrossRef] [PubMed]
  25. K. Nakajima,  et al., "Cutoff wavelength measurement in a fiber with improved bending loss," IEEE Photon. Technol. Lett. 16, 1918-1920 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited