OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 5150–5157

Integrated 10 Gb/s AWG-based correlator for multi-wavelength optical header recognition

Muhsen Aljada and Kamal E. Alameh  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 5150-5157 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we experimentally demonstrate a novel optical correlator employing dual integrated Arrayed Waveguide Grating (AWG) in conjunction with variable delay lines. The variable delay lines provide wavelength-dependent time delays and generate a wavelength profile that matches arbitrary bit patterns, whereas the AWGs are used to demultiplex and multiplex the wavelength components of the multi-wavelength header bit pattern. The recognition of 4-bit optical patterns at different wavelengths is experimentally demonstrated at 10 Gb/s by showing that the correlator produces an autocorrelation waveform of high peak whenever the input bit pattern matches the wavelengths profile, and a low-amplitude cross-correlation function otherwise.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4259) Fiber optics and optical communications : Networks, packet-switched

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 7, 2008
Revised Manuscript: March 12, 2008
Manuscript Accepted: March 17, 2008
Published: March 28, 2008

Muhsen Aljada and Kamal E. Alameh, "Integrated 10 Gb/s AWG-based correlator for multi-wavelength optical header recognition," Opt. Express 16, 5150-5157 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Huang and I. Andonovic, "Coherent optical pulse CDMA systems based on coherent correlation detection," IEEE Trans. Commun. 47, 261-271(1999). [CrossRef]
  2. R. Clavero, J. M. Martinez, F. Ramos, and J. Marti, "All-optical packet routing scheme for optical label-swapping networks," Opt. Express. 12, 4326-4332 (2004). [CrossRef]
  3. J. E. Mcgeehan, M. C. Hauer, and A. E. Willner, "Optical header recognition using fiber Bragg grating correlators," IEEE LEOS Newsletter 16, 29-32 (2002).
  4. A. E. Willner, D. Gurkan, A. B. Sahin, J. E. McGeehan, and M. C. Hauer, "All-optical address recognition for optically-assisted routing in next-generation optical networks," IEEE Commun. Mag. 41S38 - S44 (2003) [CrossRef]
  5. P. Parolari, L. Marazzi, D. Rossetti, G. Maier, and M. Martinelli, "Coherent-to-incoherent light conversion for optical correlators," J. Lightwave Technol. 18, 1284-1288 (2000). [CrossRef]
  6. K-H. Park and T. Mizumoto, "A packet header recognition assigning the position of a signal in the time axis and its application to all-optical self-routing," J. Lightwave Technol. 191076-1084 (2001). [CrossRef]
  7. J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464-1466 (2003) [CrossRef]
  8. M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R Lyons, C. H. Lin, A. A. Au, H. P. Lee, D. S. Starodubov, and A. E. Willner, "Optically assisted internet routing using arrays of novel dynamically reconfigurable FBG-based correlators," J. Lightwave Technol. 21, 2765-2778 (2003). [CrossRef]
  9. Z. Zhu, V. J. Hernandez, M. Y. Jeon, J. Cao, Z. Pan, and S. J. B. Yoo, "RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems," J. Lightwave Technol. 21, 3155-3166 (2003). [CrossRef]
  10. C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. 14, 1728-1730 (2002). [CrossRef]
  11. M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000). [CrossRef]
  12. S. Shao and M. Kao, "WDM coding for high capacity lightwave systems," J. Lightwave Technol. 12, 137-148 (1994). [CrossRef]
  13. D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13382-384 (2001). [CrossRef]
  14. C. Skoufis, S. Sygletos, N. Leligou, C. Matrakidis, I. Pountourakis, and A. Stavdas, "Data-centric networking using multiwavelength headers/labels in packet-over-WDM networks: A comparative study," J. Lightwave Technol. 21, 2110-2122 (2003). [CrossRef]
  15. M. Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based Correlator Architecture for Multi-wavelength Optical Header Recognition," J. Lightwave Technol. 24, 2779-2785 (2006). [CrossRef]
  16. A. Himeno, K. Kato, and T. Miya, "Silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron. 4, 913-924 (1998) [CrossRef]
  17. M. K. Smit and C. Van Dam, "PHASER-based WDM-devices: principals, design, and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996). [CrossRef]
  18. M. Smit, "New focusing and dispersive planar component based on an optical phased array," Electron. Lett. 24, 385-386 (1988). [CrossRef]
  19. C. Dragone, C. Edwards, and R. Kistler, "Integrated optics N x N multiplexer on silicon," IEEE Photon. Technol. Lett. 3, 896-898 (1991). [CrossRef]
  20. P. Munoz, D. Pastor, and J. Capmany, "Modeling and design of arrayed waveguide gratings," J. Lightwave Technol. 20661-674 (2002). [CrossRef]
  21. H. Sanjoh, H. Yasaka, Y. Sakai, K. Sato, H. Ishii, and Y. Yoshikuni, "Multiwavelength light source with precise frequency spacing using a mode-locked semiconductor laser and an arrayed waveguide grating filter," IEEE Photon. Technol. Lett. 9, 818-820 (1997). [CrossRef]
  22. M. C. Parker and S. D. Walker, "A Fourier-Fresnel integral-based function model for a near-parabolic phase profile arrayed-waveguide grating," IEEE Photon. Technol. Lett. 11, 1018-1020 (1999). [CrossRef]
  23. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, "Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules," IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999). [CrossRef]
  24. M. C. Parker and S. D. Walker, "Design of arrayed-waveguide gratings using hybrid Fourier-Fresnel transform techniques," IEEE J. Sel. Top. Quantum Electron. 5, 1379-1384 (1999). [CrossRef]
  25. K. A. McGreer, "Arrayed waveguide gratings for wavelength routing," IEEE Commun. Mag. 36, 62-68 (1998). [CrossRef]
  26. H. Takenouchi, H. Tsuda, and T. Kurokawa, "Analysis of optical-signal processing using an arrayed-waveguide grating," Opt. Express 6, 124-135 (2000). [CrossRef] [PubMed]
  27. Y. Hibino, "An array of photonic filtering advantages: arrayed-waveguide-grating multi/demultiplexers for photonic networks," IEEE Circuits Devices Mag. 16, 21-27 (2000). [CrossRef]
  28. R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, "Broad-Band Array Multiplexers Made with Silica Waveguides on Silicon," J. Lightwave Technol. 11, 212-219 (1993). [CrossRef]
  29. T. Kominato, Y. Ohmori, H. Okazaki, and M. Yasu, "Very low loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method," Electron. Lett. 26, 327-328 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited