OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5164–5170

Two-dimensional photonic quasicrystals by single beam computer-generated holography

Gianluigi Zito, Bruno Piccirillo, Enrico Santamato, Antigone Marino, Volodymyr Tkachenko, and Giancarlo Abbate  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5164-5170 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently important efforts have been dedicated to the realization of a new kind of photonic crystals, known as photonic quasicrystals, in which the lack of the translational symmetry is compensated by rotational symmetries not achievable by the conventional periodic crystals. Here we show a novel approach to their fabrication based on the use of a programmable Spatial Light Modulator encoding Computer-Generated Holograms. Using this single beam technique we fabricated Penrose-tiled structures possessing rotational symmetry up to 23-fold, and a two-dimensional Thue-Morse structure, which is an aperiodic structure not achievable by multiple beam holography.

© 2008 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(230.4000) Optical devices : Microstructure fabrication
(230.6120) Optical devices : Spatial light modulators
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Photonic Crystals

Original Manuscript: January 22, 2008
Revised Manuscript: March 13, 2008
Manuscript Accepted: March 14, 2008
Published: March 31, 2008

Gianluigi Zito, Bruno Piccirillo, Enrico Santamato, Antigone Marino, Volodymyr Tkachenko, and Giancarlo Abbate, "Two-dimensional photonic quasicrystals by single beam computer-generated holography," Opt. Express 16, 5164-5170 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. D. Levine and P. J. Steinhartdt, "Quasicrystals: a new class of ordered structures," Phys. Rev. Lett. 53, 2477-2480 (1984). [CrossRef]
  2. P. J. Steinhartdt and S. Ostlund, (eds.) The Physics of Quasicrystals (Word Scientific, River Edge, NJ, 1987).
  3. Z. M. Stadnik, (eds.) Physical Properties of Quasicrystals (Springer, New York, 1999). [CrossRef]
  4. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  5. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two-dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  6. X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001). [CrossRef]
  7. S. S. M. Cheng, L. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091- 4099 (1999). [CrossRef]
  8. C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999). [CrossRef]
  9. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  10. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Fabrication of a 2D photonic band gap by a holographic method," Electron. Lett. 33, 425-426 (1997). [CrossRef]
  11. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasicrystals," Adv. Mater. 15, 1526-1528 (2003). [CrossRef]
  12. R. C. Gauthier and A. Ivanov, "Production of quasicrystal template patterns using a dual beam multiple exposure technique," Opt. Express 12, 990-1003 (2004). [CrossRef] [PubMed]
  13. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, "Realization of optical periodic quasicrystals using holographic lithography," Appl. Phys. Lett. 88, 051901/1-3 (2006). [CrossRef]
  14. S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110/1-3 (2005). [CrossRef]
  15. Y. Yang, S. Zhang, and G. P. Wang, "Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography," Appl. Phyis. Lett. 88, 251104/1-3 (2006). [CrossRef]
  16. S. P. Gorkhali, J. Qi, and G. P. Crawford, "Switchable quasicrystal structures with five-, seven-, and ninefold symmetries," J. Opt. Soc. Am. B 23, 149-158 (2006). [CrossRef]
  17. E. Macià, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006). [CrossRef]
  18. F. Axel and H. Terauchi, "High-resolution X-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: towards a novel description of disorder," Phys. Rev. Lett. 66, 2223-2226 (1991). [CrossRef] [PubMed]
  19. F. Axel and H. Terauchi, "Axel and Terauchi reply," Phys. Rev. Lett. 73,1308-1308 (1994). [CrossRef] [PubMed]
  20. M. Kolar, "High-resolution X-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures," Phys. Rev. Lett. 73, 1307-1307 (1994). [CrossRef] [PubMed]
  21. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004). [CrossRef]
  22. H. Y. Lee and G. Y. Nam, "Realization of ultrawide omnidirectional photonic band gap in multiple one-dimensional photonic crystals," J. Appl. Phys. 100, 083501/1-5 (2006). [CrossRef]
  23. H. Lei, J. Chen, G. Nouet, S. Feng, Q. Gong, and X. Jiang, "Photonic band gap structures in the Thue-Morse lattice," Phys. Rev B 75, 205109/1-10 (2007). [CrossRef]
  24. L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express 15, 15314-15323 (2007). [CrossRef] [PubMed]
  25. V. A. Soifer, (eds.) Methods for Computer Design of Diffractive Optical Elements (John Wiley & Sons, Inc., New York, 2002).
  26. G. Lee, S. H. Song, C. -H. Oh, and P. -S. Kim, "Arbitrary structuring of two-dimensional photonic crystals by use of phase-only Fourier gratings," Opt. Lett. 29, 2539-2541 (2004). [CrossRef] [PubMed]
  27. W. Mao, G. Liang, H. Zou, R. Zhang, H. Wang, and Z. Zeng, "Design and fabrication of two-dimensional holographic photonic quasi crystals with high-order symmetries," J. Opt. Soc. Am. B 23, 2046-2050 (2006). [CrossRef]
  28. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, "Computer-generated holographic gratings in soft matter," Mol. Cryst. Liq. Cryst. 465, 371-378 (2007). [CrossRef]
  29. J. W. Goodman, (eds.) Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  30. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, "Encoding amplitude information onto phase-only filters," Appl. Opt. 38, 5004-5013 (1999). [CrossRef]
  31. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, "Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes," Chem. Mater. 5, 1533-1538 (1993). [CrossRef]
  32. F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, L. Criante, and F. Simoni, "Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings," Phys. Rev. E 72, 011702/1-8 (2005). [CrossRef]
  33. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys.: Condens. Matter 13, 10459-10470 (2001). [CrossRef]
  34. B. Apter, Y. David, I. Baal-Zedaka, and U. Efron, "Experimental study and computer simulation of ultra-small-pixel liquid crystal device," presented at the Eleventh Meeting on Optical Engineering and Science, Tel Aviv, Israel, 26-27 March 2007.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited