OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5186–5192

Wideband circular polarization reflector fabricated by glancing angle deposition

Yong Jun Park, K. M. A. Sobahan, and Chang Kwon Hwangbo  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5186-5192 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (7110 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a wideband circular polarization reflector fabricated as cascades of helical films with different pitch thickness by using glancing angle deposition (GLAD) technique. The full-width-at-half-maximum bandwidth of this reflector is measured from the reflectance spectra and is found about 200 nm indicating the feasibility of wideband reflector. A helical TiO2 film with three sections, each of different pitch thickness, is also studied. It shows three Bragg peaks at different wavelengths. To select appropriate material for this circular reflector, the optical properties of 5-turns TiO2, ZrO2, and Ta2O5 helical films and the porosity effect on the TiO2 helical film are investigated.

© 2008 Optical Society of America

OCIS Codes
(160.1585) Materials : Chiral media
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Thin Films

Original Manuscript: November 12, 2007
Revised Manuscript: March 20, 2008
Manuscript Accepted: March 24, 2008
Published: April 1, 2008

Yong Jun Park, K. M. A. Sobahan, and Chang Kwon Hwangbo, "Wideband circular polarization reflector fabricated by glancing angle deposition," Opt. Express 16, 5186-5192 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959). [CrossRef]
  2. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005) [CrossRef]
  3. S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005). [CrossRef]
  4. A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003). [CrossRef]
  5. K. Robbie and M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991- 2993 (1995). [CrossRef]
  6. K. Robbie and M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin film," Nature 384, 616 (1996).
  7. K. Robbie and M. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997). [CrossRef]
  8. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, "Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure," Rev. Sci. Instrum. 75, 1089-1097 (2004). [CrossRef]
  9. S.-H. Woo and C. K. Hwangbo, "Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD)," J. Korean Phys. Soc. 48, 1199-1204 (2006).
  10. K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998). [CrossRef]
  11. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, "Optical properties of a three-dimensional silicon square spiral photonic crystal," Photon. 1, 37-42 (2003).
  12. I. Hodgkinson and Q. H. Wu, "Birefringent thin-film polarizers for use at normal incidence and with planar technologies," Appl. Phy. Lett. 74, 1794-1796 (1999). [CrossRef]
  13. K. Kaminska and K. Robbie, "Birefringent omnidirectional reflector," Appl. Opt. 43,1570-1576 (2004). [CrossRef] [PubMed]
  14. A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition," Opt. Lett. 29, 2545-2547 (2004). [CrossRef] [PubMed]
  15. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, "Vacuum Evaporated Porous Silicon Photonic Interference Filters," Appl. Opt. 42, 4212-4219 (2003). [CrossRef] [PubMed]
  16. S. R. Kennedy and M. J. Brett, "Porous Broadband Antireflection Coating by Glancing Angle Deposition," Appl. Opt. 42, 4573-4579 (2003). [CrossRef] [PubMed]
  17. Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, "All-silicon polarizing filters for near-infrared wavelengths," J. Appl. Phys. 95, 402-404 (2004). [CrossRef]
  18. J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Nanostructured gradient index optical filter for high-speed humidity sensing," Sensors and Actuators B,  120, 213-219 (2006). [CrossRef]
  19. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000). [CrossRef]
  20. A. V. Popta, J. C. Sit, and M. J. Brett, "Optical properties of porous helical thin films," Appl. Opt. 43, 3632-3639 (2004). [CrossRef] [PubMed]
  21. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39,642-649 (2000). [CrossRef]
  22. F. Chiadini and A. Lakhtakia, "Design of wideband circular-polarization filters made of chiral sculptured thin films," Microwave Opt. Technol. Lett. 42, 135-138 (2004). [CrossRef]
  23. C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, "Thickness and density evaluation nanostructured thin films by glancing angle deposition," J. Vac. Sci. Technol. B 23, 2545-2552 (2005). [CrossRef]
  24. M. W. McCall, "Axial electromagnetic wave propagation in inhomogeneous dielectrics," Math. Comput. Model. 34, 1483-1497 (2001). [CrossRef]
  25. Y. Huang, Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Exp. 15, 6414-6419 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited