OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5241–5251

Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals

Jun Dong, Ken-ichi Ueda, and Alexander A. Kaminskii  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5241-5251 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical properties of Yb:Y3Sc2Al3O12 crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y3Sc2Al3O12 show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y3Sc2Al3O12 lasers with Cr4+:YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 µJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr4+:YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y3Sc2Al2O12 microchip lasers.

© 2008 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 28, 2008
Revised Manuscript: March 18, 2008
Manuscript Accepted: March 24, 2008
Published: April 1, 2008

Jun Dong, Ken-ichi Ueda, and Alexander A. Kaminskii, "Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals," Opt. Express 16, 5241-5251 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. W. F. Krupke, "Ytterbium solid-state lasers - The first decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287 - 1296 (2000). [CrossRef]
  2. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006). [CrossRef]
  3. C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, 3 - 17 (1999). [CrossRef]
  4. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089 - 1091 (1991). [CrossRef] [PubMed]
  5. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, "Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm," Opt. Lett. 20, 713 - 715 (1995). [CrossRef] [PubMed]
  6. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, "Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 100 - 104 (1997). [CrossRef]
  7. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers " IEEE J. Sel. Top. Quantum Electron. 3, 105 - 116 (1997). [CrossRef]
  8. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP 42, 440 - 446 (1976).
  9. T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, "Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12," Phys. Rev. B 41, 21 - 30 (1990). [CrossRef]
  10. Y. Sato, T. Taira, and A. Ikesue, "Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12," Jpn. J. Appl. Phys. 42 (2003).
  11. M. Kokta, "Solubility enhancement of Nd3+ in scandium-substituted rare earth-aluminum garnets," J. Solid State Chem. 8, 39 -42 (1973). [CrossRef]
  12. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin Heidelberg New York, 1981).
  13. A. A. Kaminskii, and L. Li, "Analysis of spectral line intensities of TR3+ ions in disordered crystal systems," Phys. Status Solidi(a) 26, K21 - K26 (1974). [CrossRef]
  14. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals," Phys. Status Solidi(a) 202, 2565 - 2573 (2005). [CrossRef]
  15. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, "Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics," Appl. Phys. Lett. 85, 1898 -1900 (2004). [CrossRef]
  16. J. Saikawa, Y. Sato, and T. Taira, "Passively mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser," Appl. Phys. Lett. 85, 5845 - 5847 (2004). [CrossRef]
  17. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet," J. Opt. Soc. Am. B 20, 1975 - 1979 (2003). [CrossRef]
  18. S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, "Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12," Appl. phys. B 58, 153 - 156 (1994). [CrossRef]
  19. D. S. Sumida, and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media " Opt. Lett. 19, 1343 - 1345 (1994). [CrossRef] [PubMed]
  20. F. Salin, and J. Squier, "Gain guiding in solid-state lasers," Opt. Lett. 17, 1352 - 1354 (1992). [CrossRef] [PubMed]
  21. E. J. Grace, G. H. C. New, and P. M. W. French, "Simple ABCD matrix treatment for transversely varying saturable gain," Opt. Lett. 26, 1776 - 1778 (2001). [CrossRef]
  22. J. K. Jabczynski, J. Kwiatkowski, and W. Zendzian, "Modeling of beam width in passively Q-switched end-pumped lasers," Opt. Express 11, 552 - 559 (2003). [PubMed]
  23. J. Dong, and K. Ueda, "Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser," Phys. Rev. A 73, 053824 (2006). [CrossRef]
  24. J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890 - 1901 (1995). [CrossRef]
  25. J. Dong, A. Shirakawa, and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006). [CrossRef]
  26. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  27. W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412 -1423 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited