OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5290–5298

Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm

Martin F. Schubert, Frank W. Mont, Sameer Chhajed, David J. Poxson, Jong Kyu Kim, and E. Fred Schubert  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5290-5298 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Designs of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials are optimized using a genetic algorithm. Co-sputtered and low-refractive-index materials allow the fine-tuning of refractive index, which is required to achieve optimum antireflection characteristics. The algorithm minimizes reflection over a wide range of wavelengths and incident angles, and includes material dispersion. Designs of antireflection coatings for silicon-based image sensors and solar cells, as well as triple-junction GaInP/GaAs/Ge solar cells are presented, and are shown to have significant performance advantages over conventional coatings. Nano-porous low-refractive-index layers are found to comprise generally half of the layers in an optimized antireflection coating, which underscores the importance of nano-porous layers for high-performance broadband and omnidirectional antireflection coatings.

© 2008 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

Original Manuscript: February 11, 2008
Revised Manuscript: March 20, 2008
Manuscript Accepted: March 27, 2008
Published: April 1, 2008

Martin F. Schubert, Frank W. Mont, Sameer Chhajed, David J. Poxson, Jong Kyu Kim, and E. Fred Schubert, "Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm," Opt. Express 16, 5290-5298 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. W. H. Southwell, "Coating design using very thin high- and low-index layers," Appl. Opt. 24, 457-460 (1985). [CrossRef] [PubMed]
  2. J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Silica nanorod-array films with very low refractive indices," Nano Lett. 5, 1385 (2005). [CrossRef] [PubMed]
  3. M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, "Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material," Appl. Phys. Lett. 90, 141115 (2007). [CrossRef]
  4. J.-Q. Xi, M. F. Schubert, J. K. Kim, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics 1, 176-179 (2007).
  5. W. H. Southwell, "Gradient-index antireflection coatings," Opt. Lett. 8, 584-583 (1983). [CrossRef] [PubMed]
  6. D. Poitras and J. A. Dobrowolski, "Toward perfect antireflection coatings: 2. Theory," Appl. Opt. 43, 1286-1295 (2004). [CrossRef] [PubMed]
  7. H. Greiner, "Robust optical coating design with evolutionary strategies," Appl. Opt. 35, 5477-5483 (1996). [CrossRef] [PubMed]
  8. S. Martin, A. Brunet-Bruneau, and J. Rivory, "Simulated Darwinian evolution of homogeneous multilayer systems: a new method for optical coating design," Opt. Commun. 110, 503-506 (1994). [CrossRef]
  9. S. Martin, J. Rivory, and M. Schoenauer, "Synthesis of optical multilayer systems using genetic algorithms," Appl. Opt. 34, 2247-2254 (1995). [CrossRef] [PubMed]
  10. J.-M. Yang and C.-Y. Kao, "An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incidence," J. Lightwve Technol. 19, 559-570 (2001). [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  12. H. Nagel, A. G. Aberle, and R. Hezel, "Optimized antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide," Prog. Photovolt: Res. Appl. 7, 245-260 (1999). [CrossRef]
  13. E. Vazsonya, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortsmans, J. Szlufcik, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Sol. Energy Mater. Sol. Cells 57, 179-188 (1999). [CrossRef]
  14. N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and D. R. Lillingron, "Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells," Sol. Energy Mater. Sol. Cells 66, 453-466 (2001). [CrossRef]
  15. D. J. Friedman and J. M. Olson, "Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells," Prog. Photovolt: Res. Appl. 9, 179-189 (2001). [CrossRef]
  16. Z. Q. Li, Y. G. Xiao, and Z. M. Simon Li, "Modeling of multi-junction solar cells by Crosslight APSYS," Proc. SPIE 6339, 633909 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited