OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5305–5313

Degree of polarization of thermal light emitted by gratings supporting surface waves

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5305-5313 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (660 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Absorption and emission of light due to the resonant excitation of surface waves on a grating is a well-known phenomenon. We report the first complete study of the influence of the role of angle and polarization on thermal emission by lamellar gratings. We derive the emitted Stokes vectors in any direction. We find that a source can be quasi isotropic from the point of view of the intensity but strongly anisotropic for polarized light. It follows that the degree of polarization can vary between 0 and 1, depending on directions.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.6080) Optical devices : Sources
(240.6690) Optics at surfaces : Surface waves
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: December 10, 2007
Revised Manuscript: February 22, 2008
Manuscript Accepted: February 18, 2008
Published: April 2, 2008

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, "Degree of polarization of thermal light emitted by gratings supporting surface waves," Opt. Express 16, 5305-5313 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Organ pipe radiant modes of periodic micromachined silicon surfaces," Nature (London) 324, 549 (1986). [CrossRef]
  2. .M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, andW. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999). [CrossRef]
  3. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396 (1902).
  4. D. Maystre and M. C. Hutley, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431 (1976). [CrossRef]
  5. J. J. Greffet and M. Nieto-Vesperinas, "Field theory for the generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law," J. Opt. Soc. Am. A. 10, 2735 (1998). [CrossRef]
  6. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005). [CrossRef] [PubMed]
  7. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).
  8. M. Laroche, R. Carminati, and J. J. Greffet, "Coherent thermal antenna using a photonic crystal slab," Phys. Rev. Lett. 96, 4 (2006). [CrossRef]
  9. J. LeGall, M. Olivier, and J. J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton," Phys. Rev. B 55, 10105-10114 (1997). [CrossRef]
  10. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 11 (2004). [CrossRef]
  11. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002). [CrossRef] [PubMed]
  12. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005). [CrossRef]
  13. A. Battula and S. C. Chen, "Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance," Phys. Rev. B 74, 245407 (2006). [CrossRef]
  14. M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006). [CrossRef]
  15. B. J. Lee and Z. M. Zhang, "Design and fabrication of planar multilayer structures with coherent thermal emission characteristics," J. Appl. Phys. 100, 063529 (2006). [CrossRef]
  16. B. J. Lee and Z. M. Zhang, "Coherent Thermal Emission From Modified Periodic Multilayer Structures, " ASME J. Heat Transf. 129, 17-26 (2007). [CrossRef]
  17. K. Joulain and A. Loizeau, "Coherent thermal emission by microstructured waveguides," J. Quantum Spectrosc. Radiat. Transfer 104, 208-216 (2007). [CrossRef]
  18. S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005). [CrossRef]
  19. P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005). [CrossRef]
  20. O. G. Kollyukh, A. I. Liptuga, V. Morozhenko, V. I. Pipa, and E. F. Venger, "Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field," Opt. Commun. 276, 131-134 (2007). [CrossRef]
  21. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, "Numerical study on spectral properties of tungsten onedimensional surface-relief gratings for spectrally selective devices," J. Opt. Soc. Am. A 22, 1805-1813 (2005). [CrossRef]
  22. L. Hu, A. Schmidt, A. Narayanaswamy, and G. Chen, "Effects of Periodic Structures on the Coherence Properties of Blackbody Radiation," ASME J. Heat Transf. 126, 786-792 (2004). [CrossRef]
  23. M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005). [CrossRef]
  24. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Cho, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002). [CrossRef]
  25. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, "Thermal radiation from two-dimensionally confined modes in microcavities," Appl. Phys. Lett. 79, 1393-1395 (2001). [CrossRef]
  26. D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, "Thermal emission and design in 2D-periodic metallic photonic crystal slabs," Opt. Express 14, 8785-8796 (2006). [CrossRef] [PubMed]
  27. D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, "Direct Calculation of thermal emission for threedimensionally periodic photonic crystal slabs," Phys. Rev. E 74, 036615 (2006). [CrossRef]
  28. V. Yannopapas, "Thermal emission from three-dimensional arrays of gold nanoparticles," Phys. Rev. B 73, 113108 (2006). [CrossRef]
  29. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, "Thermal emission and absorption of radiation in finite inverted opal photonic crystals," Phys. Rev. A 72, 033821 (2005). [CrossRef]
  30. R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006). [CrossRef]
  31. C. H. Seager, M. B. Sinclair, and J. G. Fleming, "Accurate measurements of thermal radiation from a tungsten photonic lattice," Appl. Phys. Lett. 86, 244105 (2005). [CrossRef]
  32. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature (London) 417, 52-55 (2002). [CrossRef] [PubMed]
  33. N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons," Appl. Phys. Lett. 86, 191102 (2005). [CrossRef]
  34. N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Thermal image encryption obtained with a SiO2 space-variant subwavelength grating supporting surface phonon-polaritons," Opt. Lett. 30, 3195-3197 (2005). [CrossRef] [PubMed]
  35. F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," ASME J. Heat Transf. 129, 11-16 (2007). [CrossRef]
  36. T. Inagaki, J. P. Goudonnet, and E. T. Arakawa, "Plasma resonance absorption in conical diffraction: effects of groove depth," J. Opt. Soc. Am. B 3, 992-995 (1986). [CrossRef]
  37. S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991). [CrossRef]
  38. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  39. J. Tervo, T. Setala, and A. T. Friberg, "Degree of coherence for electromagnetic fields," Opt. Express 11, 1137-1143 (2003). [CrossRef] [PubMed]
  40. T. Setala, J. Tervo, and A. T. Friberg, "Stokes parameters and polarization contrasts in Young’s interference experiment," Opt. Lett. 31, 2208-2210 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited