OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5338–5349

Comparison of generalized phase contrast and computer generated holography for laser image projection

Darwin Palima and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5338-5349 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser projection based on phase modulation promises several advantages over amplitude modulation. We examine and compare the merits of two phase modulation techniques; phase-only computer generated holography and generalized phase contrast, for the application of dynamic laser image projection. We adopt information theory as a guiding framework and analyze information-relevant metrics such as space-bandwidth product, output display resolution, efficiency, speckle noise, computational load and device requirements. The analysis takes into account the perspective of potential end-users.

© 2008 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.3000) Imaging systems : Image quality assessment
(110.4100) Imaging systems : Modulation transfer function
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

ToC Category:
Imaging Systems

Original Manuscript: January 30, 2008
Revised Manuscript: March 19, 2008
Manuscript Accepted: March 27, 2008
Published: April 2, 2008

Darwin Palima and Jesper Glückstad, "Comparison of generalized phase contrast and computer generated holography for laser image projection," Opt. Express 16, 5338-5349 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. C. David, J. Wei, T. Lippert, and A. Wokaun, "Diffractive grey-tone phase masks for laser ablation lithography," Microelectron. Eng. 57-8, 453-460 (2001). [CrossRef]
  2. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," P. Natl. Acad. Sci. USA 102, 13081-13086 (2005). [CrossRef]
  3. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-4 (2003). [CrossRef] [PubMed]
  4. M. Klosner and K. Jain, "Massively parallel, large-area maskless lithography," Appl. Phys. Lett. 84, 2880-2882 (2004). [CrossRef]
  5. A. W. Lohmann and D. P. Paris, "Binary Fraunhofer holograms, generated by computer," Appl. Opt. 6, 1739-1748 (1967). [CrossRef] [PubMed]
  6. J. Glückstad, "Phase contrast image synthesis," Opt. Commun. 130, 225-230 (1996). [CrossRef]
  7. J. Glückstad and P. C. Mogensen, "Optimal Phase Contrast in Common-Path Interferometry," Appl. Opt. 40, 268-282 (2001). [CrossRef]
  8. D. Gabor, "A new microscopic principle," Nature 161, 777- 778 (1948). [CrossRef] [PubMed]
  9. F. Zernike, "How I discovered phase contrast," Science 121, 345-349 (1955). [CrossRef] [PubMed]
  10. J. Glückstad, L. Lading, H. Toyoda, and T. Hara, "Lossless light projection," Opt. Lett. 22, 1373-1375 (1997). [CrossRef]
  11. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett.  29 2270-2272 (2004). [CrossRef] [PubMed]
  12. P. Rodrigo, V. Daria, and J. Glückstad, "Dynamically reconfigurable optical lattices," Opt. Express 13, 1384-1394 (2005). [CrossRef] [PubMed]
  13. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, "Photon-efficient grey-level image projection by the generalized phase contrast method," New J. Phys. 9, 132 (2007). [CrossRef]
  14. J. Glückstad, D. Palima, P. J. Rodrigo, and C. A. Alonzo, "Laser projection using generalized phase contrast," Opt. Lett. 32, 3281-3283 (2007). [CrossRef] [PubMed]
  15. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, "Generalized phase contrast matched to Gaussian illumination," Opt. Express 15, 11971-11977 (2007). [CrossRef] [PubMed]
  16. V. Arrizon and M. Testorf, "Efficiency limit of spatially quantized Fourier array illuminators," Opt. Lett. 22, 197-199 (1997). [CrossRef] [PubMed]
  17. W. Lukosz, "Optical systems with resolving powers exceeding classical limit," J. Opt. Soc. Am. 56, 1463-1472 (1966). [CrossRef]
  18. I. J. Cox and C. J. R. Sheppard, "Information capacity and resolution in an optical system," J. Opt. Soc. Am. A 3, 1152-1158 (1986). [CrossRef]
  19. P. B. Fellgett and E. H. Linfoot, "On the assessment of optical images," Phil. Trans. R. Soc. London Ser. A 247, 369-407 (1955). [CrossRef]
  20. F. Wyrowski, "Upper bound of the diffraction efficiency of diffractive phase elements," Opt. Lett. 16, 1915-1917 (1991). [CrossRef] [PubMed]
  21. D. Palima and V. R. Daria, "Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms," Appl. Opt. 45, 6689-6693 (2006). [CrossRef] [PubMed]
  22. A. J. Waddie and M. R. Taghizadeh, "Interference Effects in Far-Field Diffractive Optical Elements," Appl. Opt. 38, 5915-5919 (1999). [CrossRef]
  23. F. Wyrowski, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. A 7, 961-969 (1990). [CrossRef]
  24. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, "Vortex Stagnation problem in iterative Fourier transform algorithms," Opt. Laser Eng. 43, 43-56 (2005). [CrossRef]
  25. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, "Theory of speckles in diffractive optics and its application to beam shaping," J. Mod. Opt. 43, 1409-1421 (1996). [CrossRef]
  26. R. W. Cohn, "Fundamental properties of spatial light modulators for the approximate optical computation of Fourier transforms: a review," Opt. Eng. 40, 2452-2463 (2001). [CrossRef]
  27. D. Palima and V. R. Daria, "Holographic projection of arbitrary light patterns with a suppressed zero-order beam," Appl. Opt. 46, 4197-4201 (2007). [CrossRef] [PubMed]
  28. V. Arrizón, E. Carreón, and M. Testorf, "Implementation of Fourier array illuminators using pixelated SLM: efficiency limitations," Opt. Commun. 160, 207-213 (1999). [CrossRef]
  29. M. L. Hsieh, K. Y. Hsu, E. G. Paek, and C. L. Wilson, "Modulation transfer function of a liquid crystal spatial light modulator," Opt. Commun. 170, 221-227 (1999). [CrossRef]
  30. E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, "Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation," J. Opt. Soc. Am. A 22, 177-184 (2005). [CrossRef]
  31. G. Moddel and L. Wang, "Resolution limits from charge transport in optically addressed spatial light modulators," J. Appl. Phys. 78, 6923-6935 (1995). [CrossRef]
  32. M. Duelli, L. Ge, and R. W. Cohn, "Nonlinear effects of phase blurring on Fourier transform holograms," J. Opt. Soc. Am. A 17, 1594-1605 (2000). [CrossRef]
  33. A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. Yzuel, "Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency," Opt. Express 13, 2111-2119 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited