OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5385–5396

Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells

Mukul Agrawal and Peter Peumans  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5385-5396 (2008)
http://dx.doi.org/10.1364/OE.16.005385


View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that optical absorption in thin-film photovoltaic cells can be enhanced by inserting a tuned two-component aperiodic dielectric stack into the device structure. These coatings are a generalization and unification of the concepts of an anti-reflection coating used in solar cells and high-reflectivity distributed Bragg mirror used in resonant cavity-enhanced narrowband photodetectors. Optimized two-component coatings approach the physically realizable limit and optimally redistribute the spectral photon density-of-states to enhance the absorption of the active layer across its absorption spectrum. Specific designs for thin-film organic solar cells increase the photocurrent under AM1.5 illumination, averaged over all incident angles and polarizations, by up to 40%.

© 2008 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(160.4890) Materials : Organic materials
(230.5170) Optical devices : Photodiodes
(310.4165) Thin films : Multilayer design
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Thin Films

History
Original Manuscript: January 7, 2008
Revised Manuscript: February 9, 2008
Manuscript Accepted: February 11, 2008
Published: April 3, 2008

Citation
Mukul Agrawal and Peter Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385-5396 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5385


Sort:  Year  |  Journal  |  Reset  

References

  1. S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428, 911-918 (2004). [CrossRef] [PubMed]
  2. D. Redfield, "Multiple-pass thin-film silicon solar cell," Appl. Phys. Lett. 25, 647-648 (1974). [CrossRef]
  3. P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987). [CrossRef]
  4. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron. Devices ED-31, 711-716 (1984). [CrossRef]
  5. P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003). [CrossRef]
  6. L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, "Trapping light in polymer photodiodes with soft embossed gratings," Adv. Mater. 12, 189-195 (2000). [CrossRef]
  7. E. Yablonovitch, "Statistical ray optics," J. Opt. Soc. Amer. 72, 899-907 (1982). [CrossRef]
  8. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, "Silicon thin-film solar cells with rectangular-shaped grating couplers," Prog. Photovoltaics 14, 13-24 (2006). [CrossRef]
  9. P. Peumans and S. R. Forrest, "Very-high-efficiency double-hetrostructure copper pthalocyanine/C60 photovoltaic cells," Appl. Phys. Lett. 79, 126-128 (2001). [CrossRef]
  10. P. Peumans, S. Uchida, and S. R. Forrest, "Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films," Nature 425, 158-162 (2003). [CrossRef] [PubMed]
  11. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, "A hybrid planar-mixed molecular hetrojunction photovoltaic cell," Adv. Mater. 17, 66-71 (2005). [CrossRef]
  12. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nat. Mater. 4, 864-868 (2005). [CrossRef]
  13. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology," Adv. Funct. Mater. 15, 1617-1622 (2005). [CrossRef]
  14. P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983). [CrossRef]
  15. J. Zhao and M. A. Green, "Optimized antireflection coatings for high-efficiency silicon solar cells," IEEE Trans. Electron. Devices 38, 1925-1934 (1991). [CrossRef]
  16. R. R. Bilyalov, L. Stalmans, L. Schirone, and C. Levy-Clement, "Use of porous silicon antireflection coating in multicrystalline silicon solar cell processing," IEEE Trans. Electron. Devices 46, 2035-2040 (1999). [CrossRef]
  17. L. A. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin film," J. Appl. Phys. 86, 487-496 (1999). [CrossRef]
  18. K. Kishino, M. S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced photodetector," IEEE J. Quantum Electron. 27, 2025-2034 (1991). [CrossRef]
  19. M. S. Unlu and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995). [CrossRef]
  20. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960).
  21. C. W. Tang, "Two layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183-185 (1986). [CrossRef]
  22. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 1998).
  23. M. A. Dupertuis, B. Acklin and M. Proctor, "Generalized energy balance and reciprocity relations for thin film optics," J. Opt. Soc. Am. A 11, 1167-1174 (1994). [CrossRef]
  24. R. J. Vernon and S. R. Seshadri, "Reflection coefficient and reflected power on a lossy transmission line," Proc. IEEE  57, 101-102 (1969). [CrossRef]
  25. G. P. Ortiz and W. L. Mochan, "Nonadditivity of Poynting vector within opaque media," J. Opt. Soc. Am. A 22, 2827-2837 (2005). [CrossRef]
  26. J. S. Toll, "Causality and the dispersion relation: logical foundations," Phys. Rev. 104, 1760-1770 (1956). [CrossRef]
  27. H. M. Nussenzveig, Causality and Dispersion Relations (Academic, 1972).
  28. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical MaterialsRresearch, (Springer, 2005).
  29. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford, 1948).
  30. A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, "Phase properties of multilayers," Appl. Opt. 36, 4382-4392 (1997). [CrossRef] [PubMed]
  31. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, "Dispersive properties of optical filters for WDM systems," IEEE J. Quantum Electron. 34, 1390-1402 (1998). [CrossRef]
  32. R. K. Ahrenkiel, "Modified Kramers-Kronig analysis of optical spectra," J. Opt. Soc. Am,  61, 1651-1655 (1971). [CrossRef]
  33. C. A. Emeis, L. J. Oosterhoff, and G. de Vries, "Numerical evaluation of Kramers-Kronig Relations," Proc. R. Soc. Lond. A 297, 54-65 (1967). [CrossRef]
  34. K. Tvingstedt, V. Andersson, F. Zhang, and Olle Inganas, "Folded reflective tandem polymer solar cell doubles efficiency," Appl. Phys. Lett. 91, 123514-1-123514-3 (2007). [CrossRef]
  35. A. V. Tikhonravov, "Some theoretical aspects of thin-film optics and their applications," Appl. Opt. 32, 5417-5426 (1993). [CrossRef] [PubMed]
  36. B. T. Sullivan and J. A. Dobrowolski, "Implementation of a numerical needle method for thin-film design," Appl. Opt. 35, 5484-5492 (1996). [CrossRef] [PubMed]
  37. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996). [CrossRef] [PubMed]
  38. M. Agrawal and P. Peumans, "Design of non-periodic dielectric stacks for tailoring the emission of organic light-emitting diodes," Opt. Express 15, 9715-9721 (2007). [CrossRef] [PubMed]
  39. M. Agrawal, Y. Sun, S. R. Forrest, and P. Peumans, "Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors," Appl. Phys. Lett. 90, 241112-1-241112-3 (2007). [CrossRef]
  40. J. A. Nelder and R. Mead, "Simplex method for function minimization," Comput. J. 7, 308-313 (1965).
  41. Matlab 7.0, The Mathworks Inc., Apple Hill Drive, Natick, MA 01760.
  42. B. O’Connor, K. H. An, K. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited