OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5406–5420

Nonlinear dynamics of two-color optical vortices in lithium niobate crystals

Alexander Dreischuh, Dragomir N. Neshev, Vesselin Z. Kolev, Solomon Saltiel, Marek Samoc, Wieslaw Krolikowski, and Yuri S. Kivshar  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5406-5420 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study experimentally the nonlinear dynamics of two-color optical vortex beams in the presence of second-harmonic generation combined with the effects of photo- and thermal refraction, as well as self- and induced-phase modulation. We use an iron-doped lithium niobate crystal as a nonlinear medium for the vortex propagation and observe experimentally, depending on the laser wavelength, a decay of a double-charge vortex, splitting and reshaping of background beam, pattern formation, and controllable nonlinear rotation of a vortex pair.

© 2008 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5330) Nonlinear optics : Photorefractive optics
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

Original Manuscript: January 22, 2008
Revised Manuscript: March 31, 2008
Manuscript Accepted: March 31, 2008
Published: April 3, 2008

Alexander Dreischuh, Dragomir N. Neshev, Vesselin Z. Kolev, Solomon Saltiel, Marek Samoc, Wieslaw Krolikowski, and Yuri S. Kivshar, "Nonlinear dynamics of two-color optical vortices in lithium niobate crystals," Opt. Express 16, 5406-5420 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  2. G. Foo, D. M. Palacios, and G. A. Swartzlander, "Optical vortex coronagraph," Opt. Lett. 30, 3308-3310 (2005). [CrossRef]
  3. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch Marte, "Spiral interferometry," Opt. Lett. 30, 1953-1955 (2005). [CrossRef] [PubMed]
  4. G. Molina Terriza, J. P. Torres, and L. Torner, "Twisted photons," Nat. Phys. 3, 305-310 (2007). [CrossRef]
  5. L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Prog. Opt. 39, 291-372 (1999). [CrossRef]
  6. M. S. Soskin and M. V. Vasnetsov, "Singular optics," Prog. Opt. 42, 219-276 (2001). [CrossRef]
  7. A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Prog. Opt. 47, 291-391 (2005). [CrossRef]
  8. W. J. Firth and D. V. Skryabin, "Optical solitons carrying orbital angular momentum," Phys. Rev. Lett. 79, 2450-2453 (1997). [CrossRef]
  9. D. V. Skryabin and W. J. Firth, "Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media," Phys. Rev. E 58, 3916-3930 (1998). [CrossRef]
  10. L. Torner and D. V. Petrov, "Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second-harmonic generation," Electron. Lett. 33, 608-610 (1997). [CrossRef]
  11. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. Hooft, ’t, E. R. Eliel, and G. Fibich, "Collapse of optical vortices," Phys. Rev. Lett. 96, 133901-4 (2006). [CrossRef] [PubMed]
  12. V. Tikhonenko, J. Christou, and B. Luther-Davies, "Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium," J. Opt. Soc. Am. B 12, 2046-2052 (1995). [CrossRef]
  13. Yu. S. Kivshar and B. Luther-Davies, "Dark optical solitons: physics and applications," Phys. Rep. 298, 81-197 (1998). [CrossRef]
  14. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
  15. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, "Experimental observation of fluidlike motion of optical vortices," Phys. Rev. Lett. 79, 3399-3402 (1997). [CrossRef]
  16. E. B. Sonin, "Vortex oscillations and hydrodynamics of rotating superfluids," Rev. Mod. Phys. 59, 87-155 (1987). [CrossRef]
  17. D. Rozas, C. T. Law, and G. A. Swartzlander, "Propagation dynamics of optical vortices," J. Opt. Soc. Am. B 14, 3054-3065 (1997). [CrossRef]
  18. D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, "Motion control of ensembles of ordered optical vortices generated on finite extent background," Opt. Commun. 151, 413-421 (1998). [CrossRef]
  19. G. Indebetouw, "Optical vortices and their propagation," J. Mod. Opt. 40, 73-87 (1993). [CrossRef]
  20. F. S. Roux, "Dynamical behavior of optical vortices," J. Opt. Soc. Am. B 12, 1215-1221 (1995). [CrossRef]
  21. Yu. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies, and L. M. Pismen, "Dynamics of optical vortex solitons," Opt. Commun. 152, 198-206 (1998). [CrossRef]
  22. G. H. Kim, H. J. Lee, L. U. Kim, and H. Suk, "Propagation dynamics of optical vortices with anisotropic phase profiles," J. Opt. Soc. Am. B 20, 351-359 (2003). [CrossRef]
  23. J. Christou, V. Tikhonenko, Yu. S. Kivshar, and B. Luther-Davies, "Vortex soliton motion and steering," Opt. Lett. 21, 1649-1651 (1996). [CrossRef] [PubMed]
  24. B. Luther-Davies, R. Powles, and V. Tikhonenko, "Nonlinear rotation of 3-dimensional dark spatial solitons in a gaussian laser-beam," Opt. Lett. 19,1816-1818 (1994). [CrossRef] [PubMed]
  25. A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, "Conversion of topological charge of optical vortices in a parametric frequency converter," Opt. Commun. 140, 273-276 (1997). [CrossRef]
  26. I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, "Optics of light-beams with screw dislocations," Opt. Commun. 103, 422-428 (1993). [CrossRef]
  27. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, "Second-harmonic generation and the orbital angular momentum of light," Phys. Rev. A 54, R3742-R3745 (1996). [CrossRef] [PubMed]
  28. M. S. Soskin and M. V. Vasnetsov, "Nonlinear singular optics," Pure Appl. Opt. 7, 301-311 (1998). [CrossRef]
  29. A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, D. Neshev, and H. Walther, "Modulational instability of multiple-charged optical vortex solitons under saturation of the nonlinearity," Phys. Rev. E 60, 7518-7524 (1999). [CrossRef]
  30. S. M. Saltiel, A. A. Sukhorukov, and Yu. S. Kivshar, "Multistep parametric processes in nonlinear optics" Prog. Opt. 47, 1-73 (2005). [CrossRef]
  31. K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, "Phase-matched far-infrared generation by optical mixing of dye laser beams," Appl. Phys. Lett. 23, 669-671 (1973). [CrossRef]
  32. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997). [CrossRef]
  33. K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti : LiNbO3 optical modulators," J. Lightwave Technol. 16, 615-619 (1998). [CrossRef]
  34. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994). [CrossRef] [PubMed]
  35. D. Runde, S. Brunken, C. E. Rutter, and D. Kip, "Integrated optical electric field sensor based on a Bragg grating in lithium niobate," Appl. Phys. B 86, 91-95 (2007). [CrossRef]
  36. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968). [CrossRef]
  37. X. An, D. Psaltis, and G.W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3 : Fe," Appl. Opt. 38, 386-393 (1999). [CrossRef]
  38. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, Chichester, UK, 1997).
  39. L. Arizmendi, "Photonic applications of lithium niobate crystals," Phys. Status Solidi A 201, 253-283 (2004). [CrossRef]
  40. F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, "Frequency-doubling in self-induced waveguides in lithium niobate," Opt. Commun. 272, 238-241 (2007). [CrossRef]
  41. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, "Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate," Opt. Lett. 24, 1293-1295 (1999). [CrossRef]
  42. B. Crosignani, M. Segev, D. Engin, P. Diporto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993). [CrossRef]
  43. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994). [CrossRef] [PubMed]
  44. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons," Phys. Rev. A 52, 3095-3100 (1995). [CrossRef] [PubMed]
  45. D. N. Neshev et al., "Nonlinear spectral-spatial control and localization of supercontinuum radiation," Phys. Rev. Lett. 99, 123901-4 (2007). [CrossRef] [PubMed]
  46. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997). [CrossRef]
  47. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996). [CrossRef]
  48. D. H. Jundt, M. M. Fejer, and R. L. Byer, "Optical-properties of lithium-rich lithium-niobate fabricated by vapor transport equilibration," IEEE J. Quantum Electron. 26, 135-138 (1990). [CrossRef]
  49. S. Lan, M. F. Shih, G. Mizell, J. A. Giordmaine, Z. G. Chen, C. Anastassiou, J. Martin, and M. Segev, "Secondharmonic generation in waveguides induced by photorefractive spatial solitons," Opt. Lett. 24, 1145-1147 (1999). [CrossRef]
  50. A. D. Boardman,W. Ilecki, and Y. Liu, "Spatial solitons in a photorefractive medium sustaining second-harmonic generation," J. Opt. Soc. Am. B 19, 832-838 (2002). [CrossRef]
  51. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gasses (Academic Press, New York, 1984).
  52. S. Dinev and A. Dreischuh, "Sum-frequency generation in the xuv," Opt. Quantum Electron. 23, 91-97 (1991). [CrossRef]
  53. A. Dreischuh, U. Reiter Domiaty, D. Gruber, L. Windholz, and S. Dinev, "Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process," Appl. Phys. B 66, 175-180 (1998). [CrossRef]
  54. M. F. Shih, Z. G. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997). [CrossRef]
  55. S. Lan, C. Anastassiou, M. Segev, M. Shih, J. A. Giordmaine, and G. Mizell, "Tuning of second-harmonic generation in waveguides induced by photorefractive spatial solitons," Appl. Phys. Lett. 77, 2101-2103 (2000). [CrossRef]
  56. S. Orlov, A. Yariv, and M. Segev, "Nonlinear self-phase matching of optical second harmonic generation in lithium niobate," Appl. Phys. Lett. 68, 1610-1612 (1996). [CrossRef]
  57. C. Lou, J. Xu, H. Qiao, X. Zhang, Y. Chen, and Z. Chen, "Enhanced second-harmonic generation by means of high-power confinement in a photovoltaic soliton-induced waveguide," Opt. Lett. 29, 953-955 (2004). [CrossRef] [PubMed]
  58. A. E. Siegman, Lasers (University Science Books, Sausalito, Calif., 1986), p. 1283.
  59. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schatzel, and H. Walther, "Vortices in femtosecond laser fields," Opt. Lett. 29, 1942-1944 (2004). [CrossRef] [PubMed]
  60. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schatzel, H. Walther, D. Neshev, W. Krolikowski, and Y. Kivshar, "Spatial phase dislocations in femtosecond laser pulses," J. Opt. Soc. Am. B 23, 26-35 (2006). [CrossRef]
  61. S. Szatmari, G. Kuhnle, and P. Simon, "Pulse-compression and traveling-wave excitation scheme using a single dispersive element," Appl. Opt. 29, 5372-5379 (1990). [CrossRef] [PubMed]
  62. F. Grasbon, A. Dreischuh, G. G. Paulus, F. Zacher, and H. Walther, "Femtosecond interferometric autocorrelations in the presence of pulse front distortions," Proc. SPIE 3571, 164-168 (1999). [CrossRef]
  63. G. A. Swartzlander and J. Schmit, "Temporal correlation vortices and topological dispersion," Phys. Rev. Lett. 93, 093901-4 (2004). [CrossRef] [PubMed]
  64. SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM87185-1423.
  65. P. P. Ho, D. Ji, Q. Z. Wang, and R. R. Alfano, "Temporal behavior of cross-phase-modulated second-harmonic generation of ultrashort laser pulses in nonlinear-optical media," J. Opt. Soc. Am. B 7, 276-284 (1990) [CrossRef]
  66. M. Horowitz, R. Daisy, O. Werner, and B. Fischer, "Large thermal nonlinearities and spatial self-phase modulation in SrxBa1−xNb2O6 and BaTiO3 crystals," Opt. Lett. 17, 475-477 (1992). [CrossRef] [PubMed]
  67. V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, "Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator," Opt. Lett. 28, 1275-1277 (2003). [CrossRef] [PubMed]
  68. R. R. Alfano, P. L. Baldeck, P. P. Ho, and G. P. Agrawal, "Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials," J. Opt. Soc. Am. B 6, 824-829 (1989). [CrossRef]
  69. I. W. Hsieh, X. G. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. Mcnab, and Y. A. Vlasov, "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1135. [CrossRef] [PubMed]
  70. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11,659-661 (1986). [CrossRef] [PubMed]
  71. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited