OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5444–5452

Designs for optical cloaking with high-order transformations

Wenshan Cai, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5444-5452 (2008)
http://dx.doi.org/10.1364/OE.16.005444


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent advances in metamaterial research have provided us a blueprint for realistic cloaking capabilities, and it is crucial to develop practical designs to convert concepts into real-life devices. We present two structures for optical cloaking based on high-order transformations for TM and TE polarizations respectively. These designs are possible for visible and infrared wavelengths. This critical development builds upon our previous work on nonmagnetic cloak designs and high-order transformations.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: February 11, 2008
Revised Manuscript: March 31, 2008
Manuscript Accepted: April 1, 2008
Published: April 3, 2008

Citation
Wenshan Cai, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5444


Sort:  Year  |  Journal  |  Reset  

References

  1. G. W. Milton, and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006). [CrossRef]
  2. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2007). [CrossRef] [PubMed]
  3. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. B 72, 016623 (2005). [CrossRef]
  4. M. G. Silveirinha, A. Alu, and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. B 75, 036603 (2007). [CrossRef]
  5. D. A. B. Miller, "On perfect cloaking," Opt. Express 14, 12457-12466 (2006). [CrossRef] [PubMed]
  6. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005). [CrossRef] [PubMed]
  7. A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003). [CrossRef] [PubMed]
  8. Y. Benveniste and T. Miloh, "Neutral inhomogeneities in conduction phenomena," J. Mech. Phys. Solids 47, 1873-1892 (1999). [CrossRef]
  9. A. Hendi, J. Henn, and U. Leonhardt, "Ambiguities in the scattering tomography for central potentials," Phys. Rev. Lett. 97, 073902 (2006). [CrossRef] [PubMed]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  11. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  12. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  15. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  16. R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]
  17. D. E. Aspnes, "Optical-Properties of Thin-Films," Thin Solid Films 89, 249-262 (1982). [CrossRef]
  18. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  19. D. Schurig, and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005). [CrossRef]
  20. P. A. Belov, and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006). [CrossRef]
  21. S. M. Feng, and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216-221 (2006). [CrossRef] [PubMed]
  22. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  23. A. Salandrino, and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006). [CrossRef]
  24. O. Wiener, "Die Theorie des Mischkorpers fur das Feld der stationaren Stromung," Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509-604 (1912).
  25. D. E. Aspnes, "Bounds on Allowed Values of the Effective Dielectric Function of 2-Component Composites at Finite Frequencies," Phys. Rev. B 25, 1358-1361 (1982). [CrossRef]
  26. D. J. Bergman, "Exactly Solvable Microscopic Geometries and Rigorous Bounds for the Complex Dielectric-Constant of a 2-Component Composite-Material," Phys. Rev. Lett. 44, 1285-1287 (1980). [CrossRef]
  27. G. W. Milton, "Bounds on the Complex Dielectric-Constant of a Composite-Material," Appl. Phys. Lett. 37, 300-302 (1980). [CrossRef]
  28. P. B. Johnson, and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).
  30. W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared Properties of Hexagonal Silicon Carbide," Phys. Rev. 113, 127-132 (1959). [CrossRef]
  31. D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006). [CrossRef]
  32. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595-1595 (2006). [CrossRef] [PubMed]
  33. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]
  34. S. O'Brien and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. Condens. Matter. 14, 4035-4044 (2002). [CrossRef]
  35. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004). [CrossRef]
  36. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, "Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies," Phys. Rev. B 72, 193103 (2005). [CrossRef]
  37. L. Peng, L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited