OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5596–5601

1.3 µm Quantum Dot Laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation

F. Gerschütz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, C. Schilling, W. Kaiser, S. Höfling, and A. Forchel  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5596-5601 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a multi section laser in coupled cavity injection grating design based on 1.3 µm InGaAs/GaAs quantum dot (QD) active region we were able to enhance the 3 dB modulation bandwidth well beyond the inherent material modulation bandwidth. The material bandwidth was determined by measurements on distributed feedback (DFB) devices to approximately 8 GHz. The special multisectional design allows interaction between the lasing mode and a second mode used as catalyst and enables a high resonance frequency of the device. Based on active QD material this approach allowed us to reach a cut off frequency of 20 GHz in the small signal response of the device.

© 2008 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 15, 2008
Revised Manuscript: March 8, 2008
Manuscript Accepted: March 20, 2008
Published: April 7, 2008

F. Gerschütz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, C. Schilling, W. Kaiser, S. Höfling, and A. Forchel, "1.3 μm Quantum Dot Laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation," Opt. Express 16, 5596-5601 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. H. Su and L. F. Lester, "Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp," J. Phys. D: Appl. Phys. 38, 2112-2118 (2005). [CrossRef]
  2. J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, "Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots," Appl. Phys. Lett. 80, 2162-2164 (2002). [CrossRef]
  3. D. R. Matthews, H. D. Summers, P. M. Smowtown, and M. Hopkinson, "Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers," Appl. Phys. Lett. 81, 4904-4906 (2002). [CrossRef]
  4. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs-1 directly modulated lasers and 40 Gbs-1 signal-regenerative amplifiers," J. Phys. D: Appl. Phys. 38, 2126-2134 (2005). [CrossRef]
  5. B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, O. Bertran-Pardo, O. Le Gouezigou, and D. Make, "Uncooled isolator-free directly modulated quantum dot laser 10 Gb/s transmission at 1.3 µm with constant operation parameters," European Conference on Optical Communication, Th4.5.7. (2006).
  6. S. Fathpour, Z. Mi, and P. Bhattacharya, "High-speed quantum dot lasers," J. Appl. Phys. 38, 2103 (2005).
  7. F. Gerschütz, M. Fischer, J. Koeth, M. Chacinski, R. Schatz, O. Kjebon, A. Kovsh, A. Krestnikov, and A. Forchel, "Temperature insensitive 1.3 µm InGaAs/GaAs quantum dot distributed feedback lasers for 10 Gbit/s transmission over 21 km," Electron. Lett. 42, 1457-1458 (2006). [CrossRef]
  8. G. Morthier, R. Schatz, and O. Kjebon "Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization," IEEE J. Quantum Electron. 36, 1468-1475 (2000). [CrossRef]
  9. U. Feiste, "Optimization of modulation bandwidth of DBR lasers with detuned Bragg reflectors," IEEE J. Quantum Electron. 34, 2371-2379 (1998). [CrossRef]
  10. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 µm," Electron. Lett. 33, 488-489 (1997). [CrossRef]
  11. L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, T. W. Berg, and B. Tromborg, "Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design," Electron. Lett. 39, 1592-1593 (2003). [CrossRef]
  12. W. Kaiser, L. Bach, J. P. Reithmaier, and A. Forchel, "High speed coupled cavity injection grating lasers with tailored modulation transfer function," IEEE Photon. Technol. Lett. 16, 1997 (2004). [CrossRef]
  13. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback," IEEE J. Sel. Top. Quantum Electron. 13, 136-142 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited