OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5617–5622

Anomalous bending effect in photonic crystal fibers

Haohua Tu, Zhi Jiang, Daniel. L. Marks, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5617-5622 (2008)
http://dx.doi.org/10.1364/OE.16.005617


View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: February 7, 2008
Revised Manuscript: April 2, 2008
Manuscript Accepted: April 2, 2008
Published: April 7, 2008

Citation
Haohua Tu, Zhi Jiang, Daniel L. Marks, and Stephen A. Boppart, "Anomalous bending effect in photonic crystal fibers," Opt. Express 16, 5617-5622 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5617


Sort:  Year  |  Journal  |  Reset  

References

  1. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  2. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-7-442. [CrossRef]
  3. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004). [CrossRef] [PubMed]
  4. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, "Comparative study of large-mode holey and conventional fibers," Opt. Lett. 26, 1045-1047 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-14-1045. [CrossRef]
  5. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2007), p. 27, p. 373.
  6. N. Mortensen and J. Folkenberg, "Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena," Opt. Express 10, 475-481 (2002). [PubMed]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-765. [CrossRef]
  8. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Y. N. Kondrat’ev, "Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber," Opt. Lett. 28, 1948-1950 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-20-1948. [CrossRef] [PubMed]
  9. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, "Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber," Opt. Lett. 29, 1545-1547 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-13-1545. [CrossRef] [PubMed]
  10. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974). [CrossRef]
  11. R. H. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975). [CrossRef]
  12. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1984). [CrossRef]
  13. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-19-1684. [CrossRef]
  14. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-10-2322. [CrossRef]
  15. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-10-2331. [CrossRef]
  16. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited