OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5623–5632

Detection of fluorescent nanoparticles in flame with femtosecond laser-induced fluorescence anisotropy

Annalisa Bruno, Frederik Ossler, Corrado de Lisio, Patrizia Minutolo, Nicola Spinelli, and Antonio D’Alessio  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5623-5632 (2008)
http://dx.doi.org/10.1364/OE.16.005623


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The mean size of fluorescent nanoparticles produced in a propane flame has been measured with an in-situ technique employing a femtosecond laser to excite the sample and a streak camera for time-resolved detection of the fluorescence. The time profile of the fluorescence anisotropy showed a Gaussian behaviour, typical of free rotor reorientation. By measuring its width, we estimated an average carbon particle diameter of 3.3 nm, thus confirming the existence of combustion produced nanoparticles. The technique proves to be applicable to the study of gas-phase nanoparticles, both in combustion and environmental studies.

© 2008 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 8, 2008
Revised Manuscript: March 20, 2008
Manuscript Accepted: March 25, 2008
Published: April 7, 2008

Citation
Annalisa Bruno, Frederik Ossler, Corrado de Lisio, Patrizia Minutolo, Nicola Spinelli, and Antonio D'Alessio, "Detection of fluorescent nanoparticles in flame with femtosecond laser-induced fluorescence anisotropy," Opt. Express 16, 5623-5632 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5623


Sort:  Year  |  Journal  |  Reset  

References

  1. A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor Formation and Soot Inception in Premixed Ethylene Flames," in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973-980.
  2. P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, "The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames," J. Aerosol Sci. 29, 397-409 (1998). [CrossRef]
  3. L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, "Detection of combustion formed nanoparticles," Chemosphere 51, 1079-1090 (2003). [CrossRef] [PubMed]
  4. H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004). [CrossRef] [PubMed]
  5. M. M. Maricq, "The dynamics of electrically charged soot particles in a premixed ethylene flame," Combust. Flame 241, 406-416 (2005). [CrossRef]
  6. J. Happold, H.-H. Grotheer, and M. Aigner, "Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry," Rapid Commun. Mass. Spectrom. 21, 1247-1253 (2005). [CrossRef]
  7. R. A. Dobbins, "Hydrocarbon nanoparticles formed in flames and Diesel engines," Aerosol Sci. Tech. 41, 485-496 (2007). [CrossRef]
  8. H. Bockhorn, ed., Soot Formation in Combustion: Mechanisms and Models (Springer-Verlag, Berlin, 1994) [CrossRef]
  9. B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, "Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame," Combust. Flame 133, 173-188 (2003). [CrossRef]
  10. M. M. Maricq, "Size and charge of soot particles in rich premixed flames," Combust. Flame 137, 340-350 (2004). [CrossRef]
  11. L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, "Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis," in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631-638.
  12. L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, "UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames," Chemosphere 42, 671-680 (2001). [CrossRef] [PubMed]
  13. A. Bruno, P. Minutolo, and C. de Lisio, "Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems," Opt. Express 13, 5393-5408 (2005). [CrossRef] [PubMed]
  14. A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, "Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy," Opt. Lasers Eng. 44, 732-737 (2006). [CrossRef]
  15. A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, "Characterization of ultrafast fluorescence from nanometric carbon particles," J. Opt. A: Pure Appl. Opt. 8, S578-S584 (2006). [CrossRef]
  16. A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, "Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy," Combust. Flame 151, 472-481 (2007). [CrossRef]
  17. D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, "DLS measurements on nanoparticles produced in laminar premixed flames," Synth. Met. 139, 653-656 (2003). [CrossRef]
  18. P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, "The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames," J. Aerosol Sci. 29, 397-409 (1998). [CrossRef]
  19. A. D’Anna, A. D’Alessio, and P. Minutolo, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., (Springer-Verlag, Berlin, 1994).
  20. P. Minutolo, G. Gambi, and A. D’Alessio, "Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit" in 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 1461-1469.
  21. F. Ossler, T. Metz, and M. Aldén, "Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements," Appl. Phys. B 72, 465-478 (2001). [CrossRef]
  22. F. Ossler, T. Metz, and M. Aldén, "Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements," Appl. Phys. B 72, 479-489 (2001). [CrossRef]
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publisher, New York, U.S. 2002).
  24. P. Debye, Polar Molecules (Dover, New York, 1929).
  25. F. Perrin, "Mouvement brownien d’un ellipsoïde: (I) Dispersion diélectrique pour des molécules ellipsoïdales," J. Phys. Radium 5, 497-511 (1934). [CrossRef]
  26. F. Perrin, "Mouvement brownien d’un ellipsoïde: (II) Rotation libre et depolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales," J. Phys. Radium 7, 1-11 (1936). [CrossRef]
  27. S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, "Rotational dynamics of nonpolar laser dyes," Chem. Phys. Lett. 429, 141-146 (2006). [CrossRef]
  28. T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, "Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents," Photochem. Photobiol. Sci. 2, 329-341, (2003). [CrossRef] [PubMed]
  29. J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, "Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density," Chem. Phys. Lett. 275, 437-444 (1997). [CrossRef]
  30. R. G. Gordon, "Molecular motion in infrared and Raman spectra," J. Chem. Phys. 43, 1307-1312 (1965). [CrossRef]
  31. R. G. Gordon, "On the rotational diffusion of molecules," J. Chem. Phys. 44, 1830-1836 (1966). [CrossRef]
  32. J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, "Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids," J. Phys. Chem. A 102, 4158-4171 (1998). [CrossRef]
  33. A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotation in Gases and Liquids (Cambridge University Press, Cambridge, U.K.,1994). [CrossRef]
  34. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).
  35. E. Kluk and J. G. Powles, "Friction model for the reorientation of linear molecules in fluids," Mol. Phys. 301109-1116 (1975). [CrossRef]
  36. G. T. Evans, R. G. Cole, and D. K. Hoffman, "A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres," J. Chem. Phys. 77, 3209-3220 (1982). [CrossRef]
  37. C. Wan and C. K. Johnson, "Time-resolved two-photon induced anisotropy decay: The rotational diffusion regime," J. Chem. Phys. 101, 10283-10291 (1994). [CrossRef]
  38. S.-J. Chen and B. W. Van Der Meer, "Theory of two-photon induced fluorescence anisotropy decay in membranes," Biophys. J. 64, 1567-1575 (1993). [CrossRef] [PubMed]
  39. I. Gryczynski, H. Malak, and J. R. Lakowicz, "Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser," Chem. Phys. Lett. 245, 30-35 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited