OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5673–5680

Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection

Oleg A. Louchev, Saulius Juodkazis, Naoki Murazawa, Satoshi Wada, and Hiroaki Misawa  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5673-5680 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coupled mechanism for molecular aggregation in a thin water solution film by laser-tweezers is suggested based on (i) simulation of light intensity distribution and (ii) order of magnitude analysis of heat and mass transport induced by Marangoni convection. The analysis suggests that the laser induced temperature distribution develops within 1 ms and Marangoni convection flow commences within 0.01–1 s, which increases by 1–2 orders of magnitude the mass transfer of dissolved molecules into the laser focus where they are trapped and aggregate by attractive van der Waals forces. This mechanism, considered for the particular case of polymer assembly, suggests that it can also be successfully applied for assembling other types of clusters and molecular aggregates from solutions.

© 2008 Optical Society of America

OCIS Codes
(070.4690) Fourier optics and signal processing : Morphological transformations
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 18, 2008
Revised Manuscript: March 17, 2008
Manuscript Accepted: March 31, 2008
Published: April 8, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Oleg A. Louchev, Saulius Juodkazis, Naoki Murazawa, Satoshi Wada, and Hiroaki Misawa, "Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection," Opt. Express 16, 5673-5680 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997). [CrossRef] [PubMed]
  3. M. J. Lang and S. M. Block, "Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003). [CrossRef]
  4. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, "Multibeam laser manipulation and fixation of microparticles," Appl. Phys. Lett. 60, 310-312 (1992). [CrossRef]
  5. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829-3836 (1991). [CrossRef]
  6. K. Sasaki, M. Tsukima, and H. Masuhara, "Three-dimensional potential analysis of radiation pressure exerted on a single microparticle," Appl. Phys. Lett. 71, 37-39 (1997). [CrossRef]
  7. K.-I. Wada, K. Sasaki, and H. Masuhara, "Optical measurement of interaction potentials between a single microparticle and an evanescent field," Appl. Phys. Lett. 76, 2815-2817 (2000). [CrossRef]
  8. P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001). [CrossRef]
  9. R. C. Gauthier, "Ray optics model and numerical computations for the radiation pressure micro-motor," Appl. Phys. Lett. 67, 2269-2271 (1995). [CrossRef]
  10. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, "Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining," Appl. Phys. Lett. 64, 2209-2210 (1994). [CrossRef]
  11. T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical forces of highly focused fields," Phys. Rev. Lett. 81, 1738-1741 (1998). [CrossRef]
  12. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003). [CrossRef]
  13. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999). [CrossRef]
  14. S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003). [CrossRef]
  15. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  16. C. Manzo, D. Paparo, L. Marrucci, and I. Janossy, "Light-induced rotation of dye-doped liquid crystal droplets," Phys. Rev. E 73, 051707 (2006). [CrossRef]
  17. N. Murazawa, S. Juodkazis, H. Misawa, and H. Wakatsuki, "Laser trapping of deformable objects," Opt. Express 15, 13310-13317 (2007). [CrossRef] [PubMed]
  18. S. Juodkazis and H. Misawa, "Controlled through-hole ablation of polymer microspheres," J. Micromech. Microeng. 14, 1244-1248 (2004). [CrossRef]
  19. M. Miwa, S. Juodkazis, and H. Misawa, "Drag of laser trapped micro-particle," Jpn. J. Appl. Phys. 39, 1930-1933 (2000). [CrossRef]
  20. G. T. Shubeota, B. C. Carter, and S. P. Gross, "Tracking single particles: a user-friendly quantitative evaluation," Phys. Biol. 2, 60-72 (2005). [CrossRef]
  21. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  22. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004). [CrossRef] [PubMed]
  23. E. Furst, "Applications of laser tweezers in complex fluid rheology," Curr. Opin. Colloid. Interface. Sci. 10, 79-86 (2005). [CrossRef]
  24. C. Bustamante, Z. Bryant, and S. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003). [CrossRef] [PubMed]
  25. X. R. Bao, H. J. Lee, and S. R. Quake, "Behavior of complex knots in single DNA molecules," Phys. Rev. Lett. 91, 265506 (2003). [CrossRef]
  26. M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-1116 (1997). [CrossRef] [PubMed]
  27. J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, and C. Bustamante, "Reversible unfolding of single rna molecules by mechanical force," Science 292, 733-737 (2001). [CrossRef] [PubMed]
  28. J.-C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000). [CrossRef] [PubMed]
  29. T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, "Flexural rigidity of a single microtubule," Jpn. J. Appl. Phys. 41, 3015-3019 (2002). [CrossRef]
  30. H. Jensenius and G. Zocchi, "Measuring the spring constant of a single polymer chain," Phys. Rev. Lett. 79, 5030-5033 (1997). [CrossRef]
  31. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5454 (2000). [CrossRef] [PubMed]
  32. E. Brasselet and L. J. Dube, "Light-induced chaotic rotations in nematic liquid crystals," Phys. Rev. E 73, 021704 (2006). [CrossRef]
  33. A. Y. Savchenko, N. V. Tabiryan, and B. Y. Zel’dovich, "Transfer of momentum and torque from a light beam to a liquid," Phys. Rev. E 56, 4773-4779 (1997). [CrossRef]
  34. N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, "Control of the molecular alignment inside liquid crystals droplets by use of laser tweezers," Small 1, 656-661 (2005). [CrossRef]
  35. I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, "Optical trapping of director structures and defects in liquid crystals using laser tweezers," Opt. Express 15, 4359-4371 (2007). [CrossRef] [PubMed]
  36. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, "Reversible phase transitions in polymer gels induced by radiation forces," Nature 408, 178-181 (2000). [CrossRef] [PubMed]
  37. S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002). [CrossRef]
  38. H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999). [CrossRef]
  39. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  40. Y. Nabetani, H. Yoshikawa, A. C. Grimsdale, K. Mullen, and H. Masuhara, "Effects of optical trapping and liquid surface deformation on the laser microdeposition of a polymer assembly in solution," Langmuir 23, 6737-6743 (2007). [CrossRef]
  41. Y. Nabetani, H. Yoshikawa, A. Grimsdale, K. Mullen, and H. Masuhara, "Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam," Jpn. J. Appl. Phys. 46, 449-454 (2007). [CrossRef]
  42. W. Singer, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Collecting single molecules with conventional optical tweezers," Phys. Rev. E,  75011916 (2007). [CrossRef]
  43. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  44. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  45. P. Luchette, N. Abiy, and H. Mao, "Microanalysis of clouding process at the single droplet level," Sens. Actuators 128, 154-160 (2007). [CrossRef]
  46. P. Tabeling, Introduction to microfluidics, (Oxford University Press, Oxford, 2005).
  47. O. A. Louchev, S. Otani, and Y. Ishizawa, "The incorporation of convection into 1d model of float zone and traveling solvent techniques," J. Cryst. Growth 167, 333-344 (1996). [CrossRef]
  48. O. A. Louchev, S. Otani, and Y. Ishizawa, "Thermal analysis of float zone traveling solvent technique of crystal growth of LaB6," J. Appl. Phys. 80, 518-528 (1996). [CrossRef]
  49. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200- μm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  50. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802-4805 (2006). [CrossRef]
  51. D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Effects associated with bubble formation in optical trapping," J. Mod. Opt. 47, 1575 - 1585 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited