OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5681–5688

Waveguide coupler in three-dimensional photonic crystal

Rong-Juan Liu, Zhi-Yuan Li, Fei Zhou, and Dao-Zhong Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5681-5688 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A waveguide coupler is designed and realized in a three-dimensional woodpile photonic crystal at microwave regime. This waveguide coupler shows good energy transfer property, which is confirmed through measurement of transmission spectrum, internal field distribution and surface field distribution using Agilent microwave network analyzer.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(350.4010) Other areas of optics : Microwaves
(210.4245) Optical data storage : Near-field optical recording
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: January 23, 2008
Revised Manuscript: March 29, 2008
Manuscript Accepted: April 4, 2008
Published: April 8, 2008

Rong-Juan Liu, Zhi-Yuan Li, Fei Zhou, and Dao-Zhong Zhang, "Waveguide coupler in three-dimensional photonic crystal," Opt. Express 16, 5681-5688 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  2. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998). [CrossRef]
  3. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Jouannopoulos, "Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths," Opt. Lett. 26, 286-288 (2001). [CrossRef]
  4. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 023902 (2003). [CrossRef] [PubMed]
  5. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, and L. C. Andreani, M. Belotti, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B. 72, 125322 (2005). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  7. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett. 74, 1522-1524 (1999). [CrossRef]
  8. P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes," J. Lightwave Technol. 17, 2058-2062 (1999). [CrossRef]
  9. J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm," Appl. Phys. Lett. 76, 2982 -2984 (2000). [CrossRef]
  10. A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon Technol. Lett. 15, 694-696 (2003). [CrossRef]
  11. S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002). [CrossRef]
  12. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002). [CrossRef]
  13. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, and K. Ishida and Y. Watanabe, "Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides," Appl. Phys. Lett. 83, 3236-3238 (2003). [CrossRef]
  14. A. Sharkawy, S. Shi, and D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express 10, 1048-1059 (2002). [PubMed]
  15. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  16. A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt. 40, 2247-2252 (2001). [CrossRef]
  17. Pochi Yeh and H. F. Taylor, "Contradirectional frequency-selective couplers for guided-wave optics," Appl. Opt. 19, 2848-2855 (1980). [CrossRef] [PubMed]
  18. T. Erdogan, "Optical add-drop multiplexer based on an asymmetric Bragg coupler," Opt Commun. 157, 249-264 (1998). [CrossRef]
  19. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994). [CrossRef]
  20. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Defect structures in a layer-by-layer photonic band-gap crystal," Phys. Rev. B 51, 13961-13965 (1995). [CrossRef]
  21. E. Ozbay and B. Temelkuran, "Reflection properties and defect formation in photonic crystals," Appl. Phys. Lett. 69, 743-745 (1996). [CrossRef]
  22. R. J. Liu, Z. Y. Li, F. Zhou, and D. Z. Zhang, "Near-field studies of microwave three-dimensional photonic crystals with waveguides," Opt. Express 15, 15531 (2007). [CrossRef] [PubMed]
  23. Z. Y. Li and K. M. Ho, "Waveguides in three-dimensional layer-by-layer photonic crystals," J. Opt. Soc. Am. B 20, 801 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited