OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5721–5727

Generation of polarization entangled photon pairs using silicon wire waveguide

Hiroki Takesue, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, Yasuhiro Tokura, and Sei-ichi Itabashi  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5721-5727 (2008)
http://dx.doi.org/10.1364/OE.16.005721


View Full Text Article

Enhanced HTML    Acrobat PDF (608 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental generation of polarization entangled photon pairs based on spontaneous four-wave mixing in a silicon waveguide. Using a nano-scale silicon wire waveguide placed in a fiber loop, we obtained 1.5-µm band polarization entanglement with two-photon interference visibilities of >83%.

© 2008 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: February 29, 2008
Revised Manuscript: April 4, 2008
Manuscript Accepted: April 4, 2008
Published: April 8, 2008

Citation
Hiroki Takesue, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, Yasuhiro Tokura, and Sei-ichi Itabashi, "Generation of polarization entangled photon pairs using silicon wire waveguide," Opt. Express 16, 5721-5727 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5721


Sort:  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002). [CrossRef]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135 (2007). [CrossRef]
  3. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN wavetguides," Electron. Lett. 39, 621 (2003). [CrossRef]
  4. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55- μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293 (2005). [CrossRef] [PubMed]
  5. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. 3, 692 (2007). [CrossRef]
  6. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  7. H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop," Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  8. T. G. Noh, H. Kim, T. Zyung, and J. Kim, "Efficient source of high purity polarization-entangled photon pairs in the 1550 nm telecommunication band," Appl. Phys. Lett. 90, 011116 (2007). [CrossRef]
  9. H. Takesue, "1.5- m band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204101 (2007). [CrossRef]
  10. E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002). [CrossRef]
  11. D. Collins, N. Gisin, and H. de Riedmatten, "Quantum relays for long distance quantum cryptography," J. Mod. Opt. 52, 735 (2005). [CrossRef]
  12. K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004). [CrossRef]
  13. H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005). [CrossRef] [PubMed]
  14. Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140 (2006). [CrossRef] [PubMed]
  15. J. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388 (2006). [CrossRef] [PubMed]
  16. R. Claps, D. Dimitropoulos, Y. Han and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305 (2002). [PubMed]
  17. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007). [CrossRef]
  18. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999). [CrossRef]
  19. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (2007). [CrossRef]
  20. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891 (1998). [CrossRef]
  21. T. Yamamoto, M. Koashi, S. K. Ozdemir, N. Imoto, "Experimental extraction of an entangled photon pair from two identically decohered pairs," Nature 421, 343 (2003). [CrossRef] [PubMed]
  22. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, "Experimental entanglement purification of arbitrary unknown states," Nature 423, 417, (2003). [CrossRef]
  23. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006). [CrossRef]
  24. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007). [CrossRef] [PubMed]
  25. J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phys. Rev. A 76, 043836 (2007). [CrossRef]
  26. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005). [CrossRef]
  27. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629 (2005). [CrossRef] [PubMed]
  28. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin,W. Tittel, H. Zbinden, and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637 (2004).
  29. K. F. Lee, P. Kumar, J. E. Sharping, M. A. Foster, A. L. Gaeta, A. C. Turner, and M. Lipson, "Telecom-band entanglement generation for chipscale quantum processing," arXiv:0801.2606 (quant-ph) 17 January, 2008.
  30. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880 (1969). [CrossRef]
  31. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001). [CrossRef]
  32. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Sminov, B. Voronov, A. Dzadanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001). [CrossRef]
  33. A. J. Miller, S.W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited