OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5797–5806

Radiation losses in optical nanofibers with random rough surface

A. V. Kovalenko, V. N. Kurashov, and A. V. Kisil  »View Author Affiliations

Optics Express, Vol. 16, Issue 8, pp. 5797-5806 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radiation losses of optical nanofibers are investigated in assumption of Gaussian statistics of distorted glass/air interface. Nonlinear relationship between the radiated power and roughness power spectrum is established. The losses in the single mode silica nanofibers are estimated for the case of inverse-square law of the roughness power spectrum.

© 2008 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 15, 2008
Revised Manuscript: April 3, 2008
Manuscript Accepted: April 6, 2008
Published: April 10, 2008

A. V. Kovalenko, V. N. Kurashov, and A. V. Kisil, "Radiation losses in optical nanofibers with random rough surface," Opt. Express 16, 5797-5806 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, T. A. Birks, J. C. Knight and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Loss in solid-core photonic crystal fibers due to interface roughness scattering," Opt. Express 13, 7779-7793 (2005). [CrossRef] [PubMed]
  3. J. Jäckle and K. Kawasaki, "Intrinsic roughness of glass surfaces," J. Phys.: Condens. Matter 7, 4351-4358 (1995). [CrossRef]
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  5. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  6. G. Zhai and L. Tong, "Roughness-induced radiation losses in optical micro or nanofibers," Opt. Express 15, 13805-13816 (2007). [CrossRef] [PubMed]
  7. D. Marcuse, "Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function," Bell Syst. Tech. J. 48, 3233-3242 (1969).
  8. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).
  10. O. I. Barchuk, A. V. Kovalenko, V. N. Kurashov, and A. I. Maschenko, "Statistical characteristics of fluctuations of dielectric constant in planar waveguide with rough walls," (Ukrainskiy Fizicheskiy Zhurnal) Ukr. Phys. J. 36, 612-617 (1991).
  11. R. Price, "A useful Theorem for Non-Linear devices having Gaussian Inputs," IEEE Trans. Inf. Theory 4, 69-72 (1958). [CrossRef]
  12. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York 1984).
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY 1983).
  14. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited