OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6064–6080

Invariance of polarized reflectance measured at the top of atmosphere by PARASOL satellite instrument in the visible range with marine constituents in open ocean waters

Tristan Harmel and Malik Chami  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6064-6080 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The influence of oceanic constituents on the polarized reflectance measured at the top of atmosphere (TOA) over open ocean waters in one visible band is investigated. First, radiative transfer modelling is used to quantify the effects of biomass concentration on the TOA polarized signal for a wide range of observation geometries. The results showed that the TOA polarized reflectance remains insensitive to variations in the chlorophyll a concentration whatever the geometrical conditions in oligotrophic and mesotrophic waters, which represent about 90% of the global ocean. The invariance of the polarized signal with water content is explained by the prevailing influence of both atmospheric effects and skylight reflections at the sea surface on the polarization state of the radiation reaching the top of atmosphere level. The simulations also revealed that multidirectional and polarized TOA reflectances obtained in the visible spectrum are powerful tools for the discrimination between the aerosol optical properties. In the second part of the paper, the theoretical results are rigorously validated using original multiangle and polarized measurements acquired by PARASOL satellite sensor, which is used for the first time for ocean color purposes. First, a statistical analysis of the geometrical features of PARASOL instrument showed that the property of invariance of the TOA polarized reflectance is technically verified for more than 85% of viewed targets, and thus, indicating the feasibility of separating between the atmospheric and oceanic parameters from space remotely sensed polarized data. Second, PARASOL measurements acquired at regional and global scales nicely corroborated the simulations. This study also highlighted that the radiometric performance of the polarized visible wavelength of PARASOL satellite sensor can be used either for the aerosol detection or for atmospheric correction algorithms over open ocean waters regardless of the biomass concentration.

© 2008 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(260.5430) Physical optics : Polarization
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: December 20, 2007
Revised Manuscript: February 6, 2008
Manuscript Accepted: February 13, 2008
Published: April 15, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Tristan Harmel and Malik Chami, "Invariance of polarized reflectance measured at the top of atmosphere by PARASOL satellite instrument in the visible range with marine constituents in open ocean waters," Opt. Express 16, 6064-6080 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, "The Polder Mission - Instrument Characteristics And Scientific Objectives," IEEE Trans. Geosci. Remote Sens. 32, 598-615 (1994). [CrossRef]
  2. S. Mukai, I. Sano, and T. Takashima, "Investigation of atmospheric aerosols based on polarization measurements and scattering simulations," Opt. Rev. 3, 487-491 (1996). [CrossRef]
  3. M. I. Mishchenko and L. D. Travis, "Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight," J. Geophys. Res. 102, 16989-17013 (1997). [CrossRef]
  4. G. Miecznik, R. Illing, S. Petroy, and I. N. Sokolik, "Sensitivity metric approach for retrieval of aerosol properties from multiangular and multispectral polarized radiances," Appl. Opt. 44, 4186-4204 (2005). [CrossRef] [PubMed]
  5. F. M. Breon, J. L. Deuze, D. Tanre, and M. Herman, "Validation of spaceborne estimates of aerosol loading from Sun photometer measurements with emphasis on polarization," J. Geophys. Res. 102, 17187-17195 (1997). [CrossRef]
  6. E. Boesche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, "Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements," Appl. Opt. 45, 8790-8805 (2006). [CrossRef] [PubMed]
  7. P. Goloub, F. Waquet, J. L. Deuze, M. Herman, F. Auriol, J. F. Leon, J. Y. Balois, C. Verwaerde, and D. Tanre, "Development of a multispectral polarimeter dedicated to aerosol characterization - Preliminary results," IGARSS 2003: IEEE Int. Geosci. Remote Sens. Symp., Vols. I - Vii, Proceedings, 2164-2166 (2003).
  8. M. Herman, J. L. Deuze, A. Marchand, B. Roger, and P. Lallart, "Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model," J. Geophys. Res. 110, D10S02 (2005). [CrossRef]
  9. A. Vermeulen, C. Devaux, and M. Herman, "Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method," Appl. Opt. 39, 6207-6220 (2000). [CrossRef]
  10. B. Fougnie, G. Bracco, B. Lafrance, C. Ruffel, O. Hagolle, and C. Tinell, "PARASOL in-flight calibration and performance," Appl. Opt. 46, 5435-5451 (2007). [CrossRef] [PubMed]
  11. O. Hagolle, P. Goloub, P. Y. Deschamps, H. Cosnefroy, X. Briottet, T. Bailleul, J. M. Nicolas, F. Parol, B. Lafrance, and M. Herman, "Results of POLDER in-flight calibration," IEEE Trans. Geosci. Remote Sens. 37, 1550-1566 (1999). [CrossRef]
  12. M. Chami, R. Santer, and E. Dilligeard, "Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing," Appl. Opt. 40, 2398-2416 (2001). [CrossRef]
  13. J. Chowdhary, B. Cairns, and L. D. Travis, "Case studies of aerosol Retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data," J. Atmos. Sci. 59, 383-397 (2002). [CrossRef]
  14. J. Chowdhary, B. Cairns, and L. D. Travis, "Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters," Appl. Opt. 45, 5542-5567 (2006). [CrossRef] [PubMed]
  15. M. Chami, "Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance," J. Geophys. Res. 112, C05026 (2007). [CrossRef]
  16. J. L. Deuze, M. Herman, and R. Santer, "Fourier-series expansion of the transfer equation in the atmosphere ocean system," J. Quant. Spectrosc. Radiat. Transfer 41, 483-494 (1989). [CrossRef]
  17. G. G. Stokes, Trans. Cambridge Philos. Soc. 3, (1852).
  18. Y. Kawata, A. Yamazaki, T. Kusaka, and S. Ueno, "Aerosol retrieval from airborne Polder data by multiple scattering model," in Geosci. Remote Sens. Symp., 1994. IGARSS '94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International, (1994), 1895-1897.
  19. E. P. Shettle and R. W. Fenn, "Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties," in Environmental Research Paper Air Force Geophysics Lab., Hanscom AFB, MA. Optical Physics Div., P. Tsipouras and H. B. Garrett, eds., (1979).
  20. H. R. Gordon and M. Wang, "Retrieval of water leaving radiance and aerosol optical thickness over the oceans with seawifs: a preliminary algorithm," Appl. Opt. 33, 443-458 (1994). [CrossRef] [PubMed]
  21. M. H. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi:10.1029/2004JD004950 (2005). [CrossRef]
  22. C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Research Part II-Topical Studies In Oceanography 51, 5-42 (2004). [CrossRef]
  23. A. Morel, Optical Properties of Pure Water and Pure Seawater, in Optical Aspects of Oceanography, (Academic Press, New York, 1974), pp. 1-24.
  24. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  25. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, "Variations of light absorption by suspended particles with chlorophyll a concentrationin oceanic (case 1) waters: analysis and implications for bio-optical models," J. Geophys. Res. 103, 31033 (1998). [CrossRef]
  26. H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: A reexamination," Limnol. Oceanogr. 43, 847-858 (1998). [CrossRef]
  27. H. Bader, "Hyperbolic distribution of particle sizes," J. Geophys. Res. 75, 2822 (1970). [CrossRef]
  28. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Progress in Oceanography 61, 27-56 (2004). [CrossRef]
  29. A. C. Holland and G. Gagne, "Scattering of polarized light by Polydisperse Systems of irregular particles," Appl. Opt. 9, 1113-1121 (1970). [CrossRef] [PubMed]
  30. G. N. Plass and G. W. Kattawar, "Radiance and Polarization of Earths Atmosphere with Haze and Clouds," J. Atmos. Sci. 28, 1187-1198 (1971). [CrossRef]
  31. E. S. Fry and K. J. Voss, "Measurement of the Mueller Matrix for Phytoplankton," Limnol. Oceanogr. 30, 1322-1326 (1985). [CrossRef]
  32. K. J. Voss and E. S. Fry, "Measurement of the Mueller Matrix for Ocean Water," Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  33. D. Stramski, A. Bricaud, and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001). [CrossRef]
  34. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, "Optical properties of the "clearest" natural waters," Limnol. Oceanogr. 52, 217-229 (2007). [CrossRef]
  35. J. L. Deuze, P. Goloub, M. Herman, A. Marchand, G. Perry, S. Susana, and D. Tanre, "Estimate of the aerosol properties over the ocean with POLDER," J. Geophys. Res. 105, 15329-15346 (2000). [CrossRef]
  36. D. Antoine and A. Morel, "Oceanic primary production 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations," Global Biogeochem. Cycles 10, 43-55 (1996). [CrossRef]
  37. F. Waquet, J. F. Leon, P. Goloub, J. Pelon, D. Tanre, and J. L. Deuze, "Maritime and dust aerosol retrieval from polarized and multispectral active and passive sensors," J. Geophys. Res. 110, D10S10 (2005). [CrossRef]
  38. D. Antoine and A. Morel, "A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones," Int. J. Remote Sens. 20, 1875-1916 (1999). [CrossRef]
  39. H. Fukushima, A. Higurashi, Y. Mitomi, T. Nakajima, T. Noguchi, T. Tanaka, and M. Toratani, "Correction of atmospheric effects on ADEOS/OCTS ocean color data: algorithm description and evaluation of its performance," J. Oceanogr. 54, 417-430 (1998). [CrossRef]
  40. D. Antoine, M. Chami, H. Claustre, F. d'Ortenzio, A. Morel, G. Bécu, B. Gentili, F. Louis, J. Ras, E. Roussier, A. Scott, D. Tailliez, S. B. Hooker, P. Guevel, J. F. Desté, and D. Adams, "BOUSSOLE: A Joint CNRS-INSU, ESA, CNES and NASA Ocean Color Calibration and Validation Activity," (NASA, 2006).
  41. F. S. Zhao, Z. B. Gong, H. L. Hu, M. Tanaka, and T. Hayasaka, "Simultaneous determination of the aerosol complex index of refraction and size distribution from scattering measurements of polarized light," Appl. Opt. 36, 7992-8001 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited