OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6081–6097

Multi-Field Frequency Modulation Spectroscopy

Ido Ben-Aroya, Matan Kahanov, and Gadi Eisenstein  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6081-6097 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (753 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We Study a modification of classical FM spectroscopy in the cases where several electromagnetic fields are FM modulated, each in a different manner. This complex spectrum scans a multi-photon resonant atomic medium with the output detected by a phase-sensitive scheme. The demodulated output signal reveals the spectroscopic features of the probed medium. The case in which two different carriers are FM modulated at the same frequency and index but with an opposite phase with respect to each other is analyzed theoretically. This configuration is essential for probing Coherent Population Trapping (CPT) resonances induced by a directly modulated diode laser. Employing a macroscopic model to describe the physical properties of CPT leads to a superb fit between predicted and measured CPT characteristics.

© 2008 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:

Original Manuscript: January 30, 2008
Revised Manuscript: March 27, 2008
Manuscript Accepted: April 9, 2008
Published: April 15, 2008

Ido Ben-Aroya, Matan Kahanov, and Gadi Eisenstein, "Multi-field frequency modulation spectroscopy," Opt. Express 16, 6081-6097 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Bjorklund, "Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions," Opt. Lett. 5, 15-17 (1980). [CrossRef] [PubMed]
  2. G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation (FM) spectroscopy," Appl. Phys. B 32, 145-152 (1983). [CrossRef]
  3. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, "Optical heterodyne saturation spectroscopy," Appl. Phys. Lett. 39, 680-682 (1981). [CrossRef]
  4. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, "Residual amplitude modulation in laser electro-optic phase modulation," J. Opt. Soc. Am. B 2, 1320-1326 (1985). [CrossRef]
  5. M. Gehrtz, G. Bjorklund, and E. Whittaker, "Quantum-limited laser frequency-modulation spectroscopy," J. Opt. Soc. Am. B 2, 1510-1526 (1985). [CrossRef]
  6. W. Lenth, "Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers," Opt. Lett. 8, 575-577 (1983). [CrossRef] [PubMed]
  7. W. Lenth, "High frequency heterodyne spectroscopy with current-modulated diode lasers," IEEE J. Quantum Electron. 20, 1045-1050 (1984). [CrossRef]
  8. D. Cassidy and J. Reid, "Harmonic detection with tunable diode lasers - Two-tone modulation," Appl. Phys. B 29, 279-285 (1982). [CrossRef]
  9. G. R. Janik, C. B. Carlisle, and T. F. Gallagher, "Two-tone frequency-modulation spectroscopy," J. Opt. Soc. Am. B 3, 1070-1074 (1986). [CrossRef]
  10. D. E. Cooper and R. E. Warren, "Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques," Appl. Opt. 26, 3726-3732 (1987). [CrossRef] [PubMed]
  11. C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, "Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL)," Appl. Phys. B 70, 407-413 (2000). [CrossRef]
  12. A. Nagel, C. Affolderbach, S. Knappe, and R. Wynands, "Influence of excited-state hyperfine structure on ground-state coherence," Phys. Rev. A 61, 012504 (1999). [CrossRef]
  13. E. Arimondo and G. Orriols, "Nonabsorbing Atomic Coherences by Coherent Two-Photon Transitions in a Three-Level Optical Pumping," Lett. Nouvo Cim. 17, 333-338 (1976). [CrossRef]
  14. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, E. Wolf, ed., (Elsevier Science Amsterdam, 1996) Vol. 35, pp. 257-354 .
  15. A. Taichenachev, V. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, "Theory of dark resonances for alkali-metal vapors in a buffer-gas cell," Phys. Rev. A 67, 33810 (2003). [CrossRef]
  16. N. Cyr, M. T?etu, and M. Breton, "All-optical microwave frequency standard: a proposal," IEEE Trans. Instrum. Meas. 42, 640-649 (1993). [CrossRef]
  17. J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: Dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998). [CrossRef]
  18. S. Knappe, R. Wynands, J. Kitching, H. Robinson, and L. Hollberg, "Characterization of coherent populationtrapping resonances as atomic frequency references," J. Opt. Soc. Am. B 18, 1545-1553 (2001). [CrossRef]
  19. J. Vanier, "Atomic clocks based on coherent population trapping: a review," Appl. Phys. B 81, 421-442 (2005). [CrossRef]
  20. Y.-Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, andW. Happer, "Push-Pull Optical Pumping of Pure Superposition States," Phys. Rev. Lett. 93, 160802 (2004). [CrossRef] [PubMed]
  21. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 13, 1249-1253 (2005). [CrossRef] [PubMed]
  22. R. Lutwak, P. Vlitas, M. Varghes, M. Mescher, D. K. Serkland, and G. M. Peake, "The MAC-A miniature atomic clock," in Proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed., pp. 767-773 (IEEE, Vancouver, BC, Canada, 2005).
  23. I. Ben-Aroya, M. Kahanov, and G. Eisenstein, "A CPT based 87Rb atomic clock employing a small spherical glass vapor cell," in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed., pp. 259-270 (Naval Observatory, Reston, VA, USA, 2006).
  24. R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, "The Miniature Atomic Clock Pre-Production Results," in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 21th European Frequency and Time Forum (EFTF), D. Coler, ed., pp. 1327-1333 (IEEE, Geneva, Switzerland, 2007).
  25. M. O. Scully and M. Fleischhauer, "High-Sensitivity Magnetometer Based on Index-Enhanced Media," Phys. Rev. Lett. 69, 1360-1363 (1992). [CrossRef] [PubMed]
  26. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004). [CrossRef]
  27. J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000). [CrossRef]
  28. I. Ben-Aroya, M. Kahanov, and G. Eisenstein, "Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks," Opt. Express 15, 15060-15065 (2007). [CrossRef] [PubMed]
  29. J. A. Silver, "Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods," Appl. Opt. 31, 707-717 (1992). [CrossRef] [PubMed]
  30. J. M. Supplee, E. A. Whittaker, and W. Lenth, "Theoretical description of frequency modulation and wavelength modulation spectroscopy," Appl. Opt. 33, 6294-6302 (1994). [CrossRef] [PubMed]
  31. R. Wynands and A. Nagel, "Inversion of frequency-modulation spectroscopy line shapes," J. Opt. Soc. Am. B 16, 1617-1622 (1999). [CrossRef]
  32. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997). Ch. 5.
  33. M. Kahanov, Electrical Engineering department, Technion, Haifa 32000, Israel. (personal communication, 2007).
  34. C. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  35. X. Zhu and D. T. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation," J. Opt. Soc. Am. B 14, 1945-1950 (1997). [CrossRef]
  36. A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, "Anomalous Interaction of Spectral Modes in a Semiconductor Laser," IEEE J. Quantum Electron. 11, 510-515 (1975). [CrossRef]
  37. D. Phillips, I. Novikova, C. Wang, R. Walsworth, and M. Crescimanno, "Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock," J. Opt. Soc. Am. B 22, 305-310 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited