OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6104–6111

A controllable double-well magneto-optical trap for Rb and Cs atoms

C. T. Lin, C. R. Chen, I. H. Yang, Jianping Yin, and D. J. Han  »View Author Affiliations


Optics Express, Vol. 16, Issue 9, pp. 6104-6111 (2008)
http://dx.doi.org/10.1364/OE.16.006104


View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a novel scheme to simultaneously confine two atomic species of 87Rb and 133Cs with adjustable spatial separation by a controllable double-well magneto-optic trap. Using a single-loop wire and a magnetic bias field, the two clouds, each containing more than 1×106 atoms, are spatially separated above and below the wire center of the double-well MOT. The cloud interdistance can be controlled by independently varying the wire current and external bias field. This allows to load the double-well magnetic trap, and to study the dynamics of cold collisions between two-species atoms.

© 2008 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.7010) Atomic and molecular physics : Laser trapping
(140.7010) Lasers and laser optics : Laser trapping
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 10, 2008
Revised Manuscript: April 11, 2008
Manuscript Accepted: April 12, 2008
Published: April 15, 2008

Citation
C. T. Lin, C. R. Chen, I. H. Yang, Jianping Yin, and D. J. Han, "A controllable double-well magneto-optical trap for Rb and Cs atoms," Opt. Express 16, 6104-6111 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, "Trapping of Neutral Sodium Atoms with Radiation Pressure," Phy. Rev. Lett. 59, 2631-2634 (1987). [CrossRef]
  2. T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, "Spin-polarized spontaneous-force atom trap," Phy. Rev. Lett. 69, 2168-2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman,"Multiply loaded magneto-optical trap," Opt. Lett. 21, 290-292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phy. Rev. Lett. 83, 3398-3401 (1999); T. Pfau and J. Mlynek, "A 2D quantum gas of laser cooled atoms," OSA Trends in Optics and Photonics 7, 33-38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, "Surface Trap for Cs atoms based on Evanescent-Wave Cooling," Phys. Rev. Lett. 79, 2225-2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, 1177-1179 (1996). [CrossRef]
  3. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor," Science 269, 198-201 (1995). [CrossRef] [PubMed]
  4. M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, "Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap," Phys. Rev. A 52, R4340-R4343 (1995);M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, "Simultaneous magneto-optical trapping of three atomic species," Phys. Rev. A 73, 011402(R).1-011402(R).6 (2006). [CrossRef] [PubMed]
  5. M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, "Observation of Ultracold Ground-State Heteronuclear Molecules," Phy. Rev. Lett. 92, 133203.1-133203.4 (2004). [CrossRef]
  6. G. Roati, F. Riboli, G. Modugno, and M. Inguscio, "Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction," Phy. Rev. Lett. 89, 150403.1-150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, "Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling," Science 2941320-1324 (2001). [CrossRef]
  7. M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, "Sympathetic cooling and collisional properties of a Rb-Cs mixture," Phys. Rev. A 71, 061401(R).1-061401(R).4 (2005). [CrossRef]
  8. M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, "Model for collisions in ultracold-atom mixtures," Phys. Rev. A 72, 033408.1-33408.9 (2005). [CrossRef]
  9. H. Pu and N. P. Bigelow, "Properties of Two-Species Bose Condensates," Phy. Rev. Lett. 80, 1130-1133 (1997). [CrossRef]
  10. W. Hansel, J. Reichel, P. Hommelhoff, and T.W. Hansch, "Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds," Phy. Rev. Lett. 86, 608-611 (2001). [CrossRef]
  11. J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, "Mixing of ultracold atomic clouds by merging of two magnetic traps," Phy. Rev. A 75, 013404.1-013404.11 (2007). [CrossRef]
  12. N. R. Thomas, A. C. Wilson, and C. J. Foot, "Double-well magnetic trap for Bose-Einstein condensates," Phys. Rev. A 65, 063406.1-063406.8 (2002). [CrossRef]
  13. Q2. G.-P. Guo and G.-C. Guo, "Entanglement of individual photon and atomic ensembles," Quantum Information and Computation 3, 627-634 (2003).
  14. S. Ashhab and C. Lobo, "External Josephson effect in Bose-Einstein condensates with a spin degree of freedom," Phys. Rev. A 66, 013609.1-013609.10 (2002). [CrossRef]
  15. A. B. Matsko, N. Yu, and L. Maleki, "Gravity field measurements using cold atoms with direct optical readout," Phys. Rev. A 67, 043819.1-043819.12 (2003). [CrossRef]
  16. N. Kjærgaard, A. S. Mellish and A. C. Wilson, "Differential scattering measurements from a collider for ultracold atoms," New J. Phys. 6, 146.1-146.15 (2004); N. R. Thomas, N. Kjargaard, P. S. Julienne, and A. C. Wilson, "Imaging of s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms," Phy. Rev. Lett. 93, 173201.1-173201.4 (2004).</other> [CrossRef]
  17. M. Yun and J. Yin, "Controllable double-well magneto-optic atom trap with a circular current-carrying wire," Opt. Lett. 30, 696-698 (2005). [CrossRef] [PubMed]
  18. K. E. Gibble, S. Kasapi, and S. Chu, "Improved magneto-optic trapping in a vapor cell," Opt. Lett. 17, 526-528 (1992). [CrossRef] [PubMed]
  19. C. G. Townsend, "Laser Cooling and Trapping of Atoms," Ph.D. thesis (Oxford University, 1995).
  20. The model used to calculate the atom numbers in Ref. [17] is based on the low trapping beam intensity assumption, and uses a small laser detuning, which are different from what we use in the experiment.
  21. K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller and J. T. M. Walraven, "Two-dimensional magneto-optical trap as a source of slow atoms," Phys. Rev. A 58, 3891-3895 (1998). [CrossRef]
  22. B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw and H. B. van Linden van den Heuvell, "Guiding of cold atoms by a red-detuned laser beam of moderate power," New J. Phys. 4, 69.1-69.10 (2002). [CrossRef]
  23. A molasses cooling of a few ms on Rb is needed before the guiding beam is switched on.
  24. Ch. Buggle, J. Leonard, W. von Klitzing and J. T. M. Walraven, "Bose-Einstein Condensates Studied with a Linear Accelerator," in Laser Spectroscopy, E. A. Hinds, A. Ferguson and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199-206.
  25. Since the two quadrupole centers have the opposite magnetic sign, the new Rb MOT beams should have the same helicity as the Cs ones.
  26. Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama and C. Zimmermann, "Highly versatile atomic micro traps generated by multifrequency magnetic field modulation," J. Phys. B: At. Mol. Opt. Phys. 39, 1055-1064 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited