OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 9 — Apr. 28, 2008
  • pp: 6302–6316

The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals

G. W. Burr, S. Diziain, and M.-P. Bernal  »View Author Affiliations

Optics Express, Vol. 16, Issue 9, pp. 6302-6316 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of lithium niobate (LN) photonic crystals (PhCs) is theoretically analyzed with transmission spectra and band diagrams as calculated by the 3-D Finite-Difference Time Domain (FDTD) method. For a square lattice of holes fabricated in the top surface of an Annealed Proton-Exchange (APE) waveguide, we investigate the influence of both finite hole depth and non-cylindrical hole shape, using a full treatment of the birefringent gradient index profile. As expected, cylindrical holes which are sufficiently deep to overlap the APE waveguide mode (centered at 2.5µm below the surface) produce transmission spectra closely resembling those predicted by simple 2-D modeling. As the hole depth decreases without any change in the cylindrical shape, the contrast between the photonic pass- and stop-bands and the sharpness of the band-edge are slowly lost. We show that this loss of contrast is due to the portion of the buried APE waveguide mode that passes under the holes. However, conical holes of any depth fail to produce well-defined stop-bands in either the transmission spectra or band diagrams. Deep conical holes act as a broad-band attenuator due to refraction of the mode out of the APE region down into the bulk. Experimental results confirming this observation are shown. The impact of holes which are cylindrical at the top and conical at their bottom is also investigated. Given the difficulty of fabricating high aspect-ratio cylindrical holes in lithium niobate, we propose a partial solution to improve the overlap between shallow holes and the buried mode, in which the PhC holes are fabricated at the bottom of a wide, shallow trench previously introduced into the APE waveguide surface.

© 2008 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Photonic Crystals

Original Manuscript: December 20, 2007
Revised Manuscript: March 11, 2008
Manuscript Accepted: March 11, 2008
Published: April 21, 2008

G. W. Burr, S. Diziain, and M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: molding the flow of light (Princeton University Press, Princeton, NJ, 1995).
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998). [CrossRef]
  3. T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  4. R. W. Ziolkowski and T. Liang, "Design and characterization of a grating-assisted coupler enhanced by a photonic-band-gap structure for effective wavelength-division demultiplexing," Opt. Lett. 22, 1033-1035 (1997). [CrossRef] [PubMed]
  5. S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). [CrossRef] [PubMed]
  6. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  7. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  8. L. C. Andreani and M. Agio, "Intrinsic diffraction losses in photonic crystal waveguides with line defects," Appl. Phys. Lett. 82, 2011-2013 (2003). [CrossRef]
  9. D. Gerace and L. C. Andreani, "Disorder-induced losses in photonic crystal waveguides with line defects," Opt. Lett. 29, 1897-1899 (2004). [CrossRef] [PubMed]
  10. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 3rd ed. (Artech House, Boston, 2005).
  11. G. W. Burr, S. C. Hagness, and A. Taflove, "FDTD for Photonics," Chapter 16 of Ref. [10].
  12. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, "Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate," Appl. Phys. Lett. 76, 532-534 (2000). [CrossRef]
  13. H. Benisty, P. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, "Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals," Opt. Quantum Electron. 34, 205-215 (2002). [CrossRef]
  14. R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G. H. Duan, "Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals," Appl. Phys. Lett. 82, 1009-1011 (2003). [CrossRef]
  15. R. Ferrini, R. Houdre, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003). [CrossRef]
  16. R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, "Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide," Appl. Phys. Lett. 85, 3998-4000 (2004). [CrossRef]
  17. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, "Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate," IEEE J. Quantum Electron. 38, 743-752 (2002). [CrossRef]
  18. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystal slabs," IEEE Photon. Technol. Lett. 13, 565-567 (2001). [CrossRef]
  19. S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B 81, 283-293 (2005). [CrossRef]
  20. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003). [CrossRef]
  21. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005). [CrossRef]
  22. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, and F. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006). [CrossRef]
  23. M. Roussey, F. I. Baida, and M.-P. Bernal, "Experimental and theoretical observation of the slow light effect on a tunable photonic crystal," J. Opt. Soc. Am. B 24, 1416-1422 (2007). [CrossRef]
  24. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton-Exchange for High-Index Waveguides in LiNbO3," Appl. Phys. Lett. 41, 607-608 (1982). [CrossRef]
  25. J. A. Roden and S. D. Gedney, "Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett. 27, 334-339 (2000). [CrossRef]
  26. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  27. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, "Fabrication of single-crystal lithium niobate films by crystal ion slicing," Appl. Phys. Lett. 73, 2293-2295 (1998). [CrossRef]
  28. A. M. Radojevic, R. M. Osgood, N. A. Roy, and H. Bakhru, "Prepatterned optical circuits in thin ion-sliced single-crystal films of LiNbO3," IEEE Photon. Technol. Lett. 14, 322-324 (2002). [CrossRef]
  29. P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited